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We present a new method to quantify differences in myelinated nerve fibers. These differences range from
morphologic characteristics of individual fibers to differences in macroscopic properties of collections of
fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and
packing density. As a case study, we analyze cross–sectional electron micrographs from the fornix of young
and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated
axons. We then apply a feature selection approach to identify the features that best distinguish between the
young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age
groups. This analysis shows that the best discrimination is obtained using the combination of two features:
the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon
density, which reflects how closely axons are packed. Our feature analysis approach can be applied to
characterize differences that result from biological processes such as aging, damage from trauma or disease
or developmental differences, as well as differences between anatomical regions such as the fornix and the
cingulum bundle or corpus callosum.

T
he nervous system is a complex network allowing the transmission of signals between interconnected
neurons across distances which vary from fractions of millimeters to meters. Axons following similar paths
are often bundled together, forming nerves in the peripheral nervous system and tracts in the central nervous

system such as the corpus callosum which interconnects the two brain hemispheres. The proper functioning of
such tracts depends on axon characteristics such as size, density and spatial organization. The axons populating
different tracts or bundles change during development1–8 and aging9–14, as well as a consequence of pathology15–26

and environmental influences27–29. Alterations in specific genes might also influence the organization of bundles
of axons2,30,31. It is therefore important to have a means for quantifying, in an objective manner, the characteristics
of these axons and their bundles and to discern which features best characterize the observed differences.

Typically, studies of differences observed in nerve fibers are limited to one or just a few geometrical properties,
chosen to measure an evident and already observed difference, and then statistically evaluate that difference
between groups, in an individual fashion. This methodology presents several problems, as some of the differences
may be subtle and not easily identified by visual inspection and hence not chosen for quantification, restricting the
identification of potential differences. As a result, there have been few systematic attempts to analyze and explore
a wide range of possible features as means to identify the main effects32–35.

We present here a new method to uncover which features of axons are most affected by an underlying biological
process. In this systematic investigation, we consider a priori a large set of candidate features representative of
diverse types of possible differences in axons (e.g. density, shape of axons, spatial order, etc.) and then use the
feature selection technique36–38 to identify which combinations of such features yield the best discrimination
between axons of two distinct groups. This approach enables the identification from the list of candidate features,
of the set of features that, when taken together, best discriminates between groups in a general dataset.

As a case study, we apply this methodology to characterize changes observed with normal aging in the
myelinated nerve fibers of the fornix of young and old rhesus monkeys. The fornix is a bundle of nerve fibers
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carrying signals from the hippocampus to other structures in the
limbic system, such as the hypothalamus, and it is crucial in normal
cognitive functions, especially memory formation39. Previous studies
have shown that the axon density declines with age40. Our methodo-
logy shows that density related features, in particular the fraction of
occupied axon area and the effective local density, which measures
how closely axons are packed, are the features that provide the best
discrimination between the young and old age groups. These features
are shown to be better than simple density alone, which provides an
accuracy of only 75% when assigning samples to their age groups.
Furthermore, we show that using the combination of fraction of
occupied axon area and effective local density is enough to character-
ize the age group separation in the samples observed, with an accu-
racy of 90%, and that the addition of other features adds little to the
accuracy.

Results
Recognition and characterization of myelinated axons. In Fig. 1 we
show a diagram illustrating the steps we take to characterize the
myelinated axons from each electron microscope (EM) image. We
start with an EM image of the fornix, showing a cross–sectional cut of
the myelinated nerve fibers. Using the recognition algorithm

described in Methods, we obtain the outlines of the axolemma of
myelinated axons. Based on this recognition protocol, we determine,
for each myelinated axon, the following properties: the centroid
position Ri, its area Ai, the area of its Voronoi cellAi and 6 morpho-
logic features known to provide a good description of a shape’s
geometrical properties, i.e. perimeter, elongation, circularity,
diameter, mean curvature and bending energy41. In Fig. 1(a) we see
a representative EM image of a young subject, while the recognized
axons are shown overlaid on top of the original EM image in
Fig. 1(b). In Fig. 1(c) we draw a schematic diagram of the system
in order to clearly visualize the properties used as a basis for our
analysis.

Using these 9 individual axon properties as a basis, we derive a
collection of 45 different features for each sample (i.e. each EM
image). These include statistical moments of the distributions (mean,
standard deviation, skewness) as well as correlations between the
axon properties. These features can be classified into three categories:
macroscopic, morphologic and structural features. Macroscopic fea-
tures, related to the characteristics of collections of axons, include
quantities such as density and the fraction of occupied area (i.e. the
ratio of the area occupied by the myelinated axons to the total sample
area). Morphologic features refer to characteristics of individual

Figure 1 | Processing steps for characterizing myelinated axons and their structure. The characterization process is done on a total of 67 electron
micrographs (EM images) of the fornix, belonging to 6 different subjects. (a) We show, as an example, one of the EM images of subject AM77 (6 years old).
The scale bar (in black) measures 2 mm. (b) Our recognition algorithm (see Methods for details) is used to segment the areas of myelinated axons (in red).
(c) Schematic diagram of a small set of myelinated axon contours and the respective Voronoi tessellation of the embedding space. For one of the axons we
show the relevant properties used to characterize each axon: they are the centroid position Ri, axon area Ai, Voronoi cell area Ai and axon shape
parameters, collectively referred to as Ci. These properties are then used as a basis to calculate the 45 features used to describe each EM image (e.g. axon
density, hexagonality index, etc.).
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axons and include parameters of the area distribution, perimeter,
circularity and curvature, for example. Finally, structural features,
related to the relationship between different axons in each sample,
include, among others, parameters of the nearest neighbors distribu-
tions and quantities derived from the Voronoi analysis such as the
mean hexagonality index and the mean number of Voronoi neigh-
bors. Supplementary Table S1 lists all the features collected together
with their respective definitions.

Single feature analysis. We begin our analysis by considering each
feature individually, and calculating its mean value for each EM
image, or sample. We determine the accuracy of each feature when
used to discriminate between young and old, defined as the cross-
validated percentage of correctly classified samples42 and calculated
using a K-nearest neighbors classifier43, with K 5 3 (see Methods for
details). We note that accuracy refers to the correct classification of
the individual samples, i.e. each EM image, and not of the entire set
from each subject. In order to estimate the statistical difference
between the two age groups, we also perform for each feature, a
Welch’s t-test on the mean values for each sample. The values
obtained for all features can be found in the Supplementary Table
S2. In Fig. 2 we show the estimated probability density functions for 4
representative features, as well as the accuracy (Acc) and the p-value
of the Welch’s t-test.

Fig. 2(a) and Fig. 2(b) show the two features that provide the best
accuracy in classification, i.e. differentiating between membership in
the young versus the old group. Since it is known that myelinated
axon density declines with age40, we expect to obtain high accuracies
for density related features. The fraction of occupied area, shown in
Fig. 2(a), is one such feature. It combines the macroscopic informa-
tion provided by the density with the morphologic information given
by the area of the axons. We find that such combination leads to an
81% accuracy for discrimination between age groups. Another inter-
esting result comes from the effective local density, Fig. 2(b). We see
that this feature has an accuracy of 80%, which is almost the same

accuracy as the fraction of occupied area, and is a better single feature
discriminant of the two age groups than the actual axon density,
which has an accuracy of 75%.

The effective local density introduced above is defined as the den-
sity of a random particle distribution with the same n-th nearest
neighbor distance scaling (see Methods for definition). By consider-
ing only the nearest neighbor distances, the effective local density
depends only on how closely packed the axons are, thus providing an
estimate of the local density around the axons, ignoring the presence
of any abnormally large axon-free regions occupied by excessive
myelin sheath or other biological elements such as glia and blood
vessels. We define an axon-free region as any region in the EM image
that is not occupied by a myelinated axon. Samples with high effec-
tive local density have regions with large clustered axon-free areas
with no myelinated axons, that skew the axon density measurement
towards smaller values. On the other hand, samples with low effective
local density have its axon-free regions spread out, i.e. equally dis-
tributed throughout the sample, with little to no clustering effect (see
Supplementary Fig. S1 for details).

We observe that the axons have different structures in the two age
groups, reflected in the difference of the hexagonality index, shown
in Fig. 2(c). The hexagonality index measures the angular regularity
of a structure, and is equal to 1 when the system is perfectly ordered
as a triangular lattice, decreasing in value as a system’s disorder
increases44 (see Methods for definition). From Fig. 2(c), we see that
samples from the old subjects have a lower hexagonality index than
the young subjects, reflecting an increase in disorder with age.
Despite the observable increase in disorder with age, we find that
the mean number of neighbors, measured by the number of adjacent
Voronoi cells, is the same for both the young and old age groups:
5.93.

Finally, Fig. 2(d) shows the feature that gives the worst accuracy:
the coefficient of variation of the axon area, a morphologic feature. In
fact, considering the rest of the morphologic features, most provided
low accuracies and showed no significant differences between the

Figure 2 | Single feature analysis. Probability density functions of 4 representative features for the young group (in blue) and old group (in red). Figures
(a) and (b) show the two features providing the highest accuracy in age group classification. Figure (c) shows a feature representative of the system’s
structural regularity. Figure (d) shows the feature providing the lowest accuracy in age group classification. The probability density functions are
determined by using a gaussian kernel density estimation method. In each plot we also show the accuracy in classification using that single feature, and the
Welch’s t-test p-value detailing the statistical difference between the two distributions (n.s. stands for not significant, p . 0.05).
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two age groups. In other words, there is no observable change in axon
size or axon shape with aging, with the mean elongation being the
only exception, with an accuracy of 61%.

Feature selection. Using single features, the highest accuracy
attained distinguishing between samples from young and old is
81%. When all features are considered together the accuracy
increases only to 84%, just a slight increase from the single feature
case with the highest accuracy. This reflects the fact that using a high
dimensional space of features comes with many issues for
classification (e.g. difficulty in sampling entire space, increased
execution time, additional classification noise)45, especially when
there are many irrelevant features.

To reduce the dimensionality of the fornix data and avoid problems
associated with the high dimensionality one could consider using the
Principal Component Analysis (PCA) procedure46 to reduce the
dimensions of the data to a few components that account for as much
variability in the data as possible. However, since we are not interested
in describing the variability of the age groups but in distinguishing
between them and pinpointing which features are the most important
for that task, we used an alternative technique called feature selec-
tion36,37. This technique aims to find a subset of features that, when
combined, gives a good separation between classes (i.e. the two age
groups). In this technique, one considers a subset of features instead
of each one individually, since features that alone do not give a good
separation between classes can significantly improve discrimination
when combined with other features36,37. In a similar fashion, two
highly correlated features, which in principle would hold redundant
information, can also help the discrimination process in some cases.

Two feature analysis. Although the feature selection technique does
not fix the size of the subset of features a priori, for reasons that will
be clear below, we start by limiting the subset size to 2. From the total
of 990 possible pairs of features, we keep only those pairs with more

than 85% of accuracy, and construct the graph shown in Fig. 3
describing the accuracy relationship between the features. An
immediate characteristic we observe in the graph is that the
fraction of occupied area makes connections with many other
features (usually called a hub in network terminology), which
confirms the importance of this feature. Considering that the
fraction of occupied area alone already provides an accuracy of
81%, it is expected that a small contribution to the classification
from another feature will create a link between the two features.
However, this high connectivity is not replicated by other features
with similarly large accuracies (e.g. effective local density, third
nearest neighbor mean distance).

The highest accuracy for the age group separation is achieved for
the combination of fraction of occupied area and effective local den-
sity, with a 90% accuracy. However, considering that the change of
the class of a single sample roughly translates to a 1.5% difference in
accuracy, other pairs of features with small differences in accuracy
should also be taken into consideration. From Fig. 3, we observe that
the pairs of features that result in the highest accuracies are: the
combination of the fraction of occupied area (macroscopic feature)
with either the effective local density or the hexagonality index
(structural features); or the combination of the mean perimeter
(morphologic feature) with either the second nearest neighbor mean
distance or the third nearest neighbor mean distance (structural
features). These 4 pairs of features result in accuracies larger than
87.5% in the age group separation. We note that the fraction of
occupied area is strongly correlated with structural features such as
mean hexagonality index and effective local density, which means
that these feature combinations bring some redundant information
to the classification (see Supplementary Fig. S2 for details). Despite
this redundancy, there is still a significant improvement in the sam-
ple separation accuracy when combining the fraction of occupied
area with the effective local density or the mean hexagonality index.

Figure 3 | Graph of the classification accuracy provided by pairs of features. The size of each ellipse is proportional to the accuracy provided by the
use of that feature alone. The value on each link (illustrated by both the color and width of the link) represents the accuracy that the two features connected
by the link provide when separating the samples into the two age groups. Only links having an accuracy greater or equal to 85% are shown. We note
that all accuracy values shown have an associated error smaller than 2%. See Supplementary Table S1 for a list of the abbreviated names given to the
features.

www.nature.com/scientificreports
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Multiple feature analysis. In order to determine if the age group
separation can be improved by considering larger subsets of features,
we perform the same calculations for subsets of three features (see
Supplementary Fig. S3 for details). We note that the maximum
obtained accuracy value is 91%, compared to 90% for the pairwise
case, which means that little information is added when including a
third feature. In fact, considering the pairs of features that result in
the highest accuracies in Fig. 3, the inclusion of another degree of
freedom in the classification procedure, in the form of an additional
feature, would only correct, at best, one misclassified sample. Since
including one degree of freedom only to correctly classify one more
sample does not provide much benefit to the procedure, the addition
of a third feature is unnecessary.

Removing the limit imposed on the subset size, we use feature
selection to search for the highest possible classification accuracy that
one can achieve for any subset of features. Since the number of
possible subsets is large, we use a best-first search algorithm47 to
search for the best subset considering all possible combinations of
features (see Methods for details). We find that the highest accuracy
we can achieve is 94%, for a subset containing 6 features (the features
in the subset are: FracOccupArea, EffDensity, PearsonR1stShellAxon,
Skewness2ndNNDist, Skewness3rdNNDist and StdDevElongation;
see Supplementary Table S1 for a list of the abbreviated names given

to the features). Although this subset represents a small increase from
the 90% maximum accuracy we obtain for pairs of features, we note
that the extra 4 features only helped correct, at most, 3 misclassified
samples. Therefore, we conclude that the best approach to character-
ize the aging of the rhesus monkey fornix is to consider the fornix
samples in a 2D space, where the samples are characterized by pairs
of features, as shown in Fig. 3.

Best age discriminant. When considering the two feature analysis,
several pairs of features provide a high classification accuracy. In fact,
as seen in Fig. 3, four pairs of features result in accuracies larger than
87.5% in the age group separation. In order to choose the pair more
pertinent to the age group separation, we measure the scatter
distance between the two classes48, revealing the difference in the
mean distance between classes for pairs of features with similar
resulting accuracies. Thus, we look for a pair of features that
provides both a high accuracy in the age group separation as well
as a large distance between the classes. Following this criterion, the
most relevant pair is formed by the fraction of occupied area and the
effective local density. In Fig. 4 we show a scatter plot of the fornix
samples in the 2D space formed by these two features, where we see
that the young and old groups are well separated, with only 6 samples
falling in the wrong age class. In the same figure we also show EM

Figure 4 | Locations of the fornix samples in a two features space. At the center we show the scatter plot of all samples belonging to the 6 different
subjects, depending on their fraction of occupied area and effective local density. Samples belonging to the young subjects are represented in blue while
samples of the old subjects are in red. These two features not only provide a good accuracy for age group discrimination, but also have a relatively large
class scatter distance. Around the scatter plot we show the EM images of selected samples having particularly interesting values for the two features. These
include samples at the interface between the age groups, samples having properties of the opposite age group, as well as outliers and prototypes (i.e.
samples in the core of the class) for each age group.
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images of samples located at interesting points in this 2D space.
These include samples that are on the interface between the two
classes, for which the fraction of occupied area or the effective
local density alone would not be enough to correctly classify the
samples, but that are classified in the right age group when the
combination is used.

We note that, similarly to what is revealed in the single feature
analysis, the combination of effective local density and fraction of
occupied area, which has an accuracy of 90%, provides a better dis-
crimination than the pair formed by the axon density and fraction of
occupied area, which has an accuracy of only 81%. In fact, by repla-
cing axon density with effective local density, a fraction of the mis-
classified samples migrate to their respective age group. Although
these results were obtained using the K-nearest neighbors classifier,
when considering other algorithms for classification, we observe that
the combination of fraction of occupied area and effective local den-
sity commonly appears as one of the most accurate pair of features,
validating our results (the other classifiers used were: Naive Bayes,
Bayesian Network, Logistic, C4.5, Classification And Regression
Tree - CART and Multilayer Perceptron).

Finally, to validate the use of the combination of fraction of occu-
pied area and effective local density to distinguish between young
and old, we apply an unsupervised classification algorithm43. This
classification is done via an agglomerative hierarchical clustering
method using the Ward’s criterion49, where each sample is described
solely by these two features. The final result of the hierarchical clus-
tering is presented as a dendrogram in Fig. 5, where the distance
between two groups indicates how large the variance of the merged
group is, compared to the variance of each group separately. We see
that this unsupervised classification method, which does not know
anything about the classes a priori, assigns most of the samples in the
correct class, with only 6 samples misclassified.

Discussion
In this paper, we present a systematic procedure to quantify differ-
ences between samples of nerve fibers taken from distinct groups.
This method allows us to objectively identify the most appropriate set
of features that best discriminates samples from distinct groups such
as young and old, but is also applicable to other conditions (develop-
ment, disease) as well as for comparisons across regions of interest in
the same species and across different species. By using a feature
selection algorithm, this method has the advantage of considering
simultaneously an extensive list of features, without the risk of ignor-
ing features that could have been overlooked. Furthermore, this
measurements are performed automatically using an algorithm,
instead of relying on conventional stereological techniques. The ana-
lysis in this method is done in an incremental manner, as we perform
an exhaustive comparison of single, pairs and trios of features. We
also perform a search for the set of features resulting in the highest
accuracy, looking for the set that provides the most accurate group
separation, regardless of the number of features in that set. In this
analysis, we provide a comprehensive list of features that may unveil
particularly interesting characteristics in three main aspects of nerve
fibers: macroscopic features (characteristics of collections of axons),
morphologic features (characteristics of individual axons) and struc-
tural features (characteristics of the relationship between different
axons in each sample).

In the case of the specific application to the problem of aging we
find that, when considering single features individually, density
related features provide the best age separation. These include frac-
tion of occupied area, effective local density, axon density, number of
axons as well as third/second/first nearest neighbor mean distance.
This is expected, since it is known that one of the most pronounced
effects of aging in the fornix is the loss of myelinated axons40.

We find that the fraction of occupied area provides the best single
feature accuracy. This may be an indication that the actual axon area

through which information is transmitted might be more relevant to
aging than the number of elements that can transmit it, i.e. the
number of axons. The mean hexagonality index also provides a good
separation between the samples, with the young group having a
higher mean hexagonality index, which shows that the young group
has a more regular or ordered angular structure, i.e. the axons sur-
rounding each axon are distributed more evenly. This regularity is
partially lost during aging, possibly due to temporally spaced loss of
axons from different regions, with temporally spaced gliosis filling in.

Features related to the area and shape of the contour of the mye-
linated axon, i.e. morphologic features, are not statistically different
for the two age groups, as reflected by the low accuracies attained
when discriminating between age groups using those features indi-
vidually. This indicates that myelinated axons are lost irrespectively
of their area or shape. It would be of interest to apply the same
analysis to the morphologic characteristics of the myelin sheaths,
since it is known that they suffer alterations upon aging40. We reserve
this task for future work.

In the analysis with two features, an exhaustive search reveals that
many pairs of features can provide accuracies near 90% (these
include FracOccArea 1 EffDensity, MeanPerimeter 1 2ndNNDist,
MeanPerimeter 1 3rdNNDist, FracOccArea 1 MeanHexagonality,
FracOccArea 1 2ndNNDist, FracOccArea 1 3rdNNDist and
MeanArea 1 2ndNNDist). The most relevant pair is formed by the
combination of fraction of occupied area and effective local density.
This pair provides the highest accuracy in the age group separation as
well as a large scatter distance between the two classes. The dendro-
gram in Fig. 5 validates our findings, showing that even if we do not
know the classes a priori we still find a clear separation between
samples. This pair is particularly interesting, since by replacing density
with effective local density, one corrects the classification of a few
samples that would have been assigned to the wrong class if using
the pair formed by the density with the fraction of occupied area. We
find that the effective local density is, at least in the study of aging,
more sensitive to axon loss than simple density. This may be the case
because it is sensitive to structural changes in the spatial relationships
among axons, specifically the non-random presence of axon-free
regions. In turn, this may reflect the fact that axons with similar
properties (size, origin, etc) may be spatially clustered. If so, then
the loss of axons in these clusters might reflect their selective
vulnerability.

Furthermore, we note that the pairs of features selected, where one
of them is a morphologic feature, provide a good age group separa-
tion due to differences in the geometric packing of the myelinated
axons. The features of axons in young samples evidently have a more
restricted range of values due to a tighter geometric packing, when
compared to old samples (see Supplementary Fig. S4 for details).

When considering sets of three features, the highest accuracy
attained is 91%, resulting in an improvement of the classification
accuracy of only 1%. That is, the inclusion of another feature only
corrects, at best, the classification of one sample. We also look for the
set of features (regardless of their number) that can provide the high-
est possible accuracy using a heuristic search, and find that the dis-
crimination can be improved to as much as 94%, but needing a set of
6 particular features. Therefore, two features are enough to char-
acterize the separation between the two age groups. Note that this
conclusion is valid for our case study, since other cases might need
more (or less) features to confidently discriminate between the two
different classes.

In summary, feature selection is a novel and useful methodology to
choose the best set of features to describe the samples and detect
differences between classes of myelinated axons. In this specific case
study of aging, we conclude that only two features are enough to
discriminate the samples into their proper age groups, namely
the combination of fraction of occupied area and effective local
density.

www.nature.com/scientificreports
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Figure 5 | Unsupervised class recognition. Dendrogram of an agglomerative hierarchical clustering algorithm49 applied to all the fornix samples
belonging to the 6 different subjects, described only by their fraction of occupied area and effective local density. Samples belonging to the young subjects
are written in blue while samples of the old subjects are written in red. This algorithm is a systematic procedure to characterize the scatter plot seen in
Fig. 4, without knowing the class of the samples, by grouping samples with similar characteristics together. This grouping (or clustering) is done by
minimizing the variance of the cluster being merged, with that minimized variance shown as the distance of that merged group.
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It is also important to note that the general methodology for
feature detection presented here should be adaptable to enable the
observation of changes in microscopic features caused by brain
pathologies in neurodegenerative diseases like Alzheimer’s Disease
or by developmental disorders as well as pathological or devel-
opmental changes in other organ systems like the kidney or the
pancreas. Moreover, our methodology can be potentially extended
to feature detection techniques at more macroscopic scales such as
MRI.

Methods
Electron micrographs. The experimental protocol for fixing the brain of the
monkeys, the tissue preparation and microscopy setup are described in Ref. 40. Our
measurements are performed on electron microscopic (EM) images of the fornix
from six female specimens of rhesus monkey. Our cohort is divided into two groups: a
young group, consisting of 3 subjects with ages ranging from 6 to 8 years; and an old
group composed of the other 3 monkeys aged between 25 and 32 years old40. In Table I
we show the ages of the subjects used in this study.

A total of 67 electron micrographs (EM images) were available, of which 34
belonged to the young monkeys as follows: 13 EM images of animal AM77, 13 of
animal AM129 and 6 of animal AM130. The other 33 were of the old monkeys,
specifically 15 EM images of animal AM100, 12 of animal AM23 and 6 of animal
AM41. These EM images were digitized with a resolution of 237 pixels per micron.

Axon recognition algorithm. The analysis of a large set of electron micrographs
allowed the consideration of a large number of axons. This was required in order to
perform a reliable spatial statistical analysis. Given the large number of myelinated
axons, a semi-automated algorithm was developed in order to extract the coordinates
and boundaries of the myelinated axons in an EM image, with the highest accuracy
possible. In the EM images, the axon is very lightly stained, while the myelin sheath
surrounding it is the darkest feature in the image. Our algorithm takes advantage of
this contrast, and searches for continuous boundaries between a convex bright region
and dark region. Note that the recognition procedure used here is original and it is
based on well founded assumptions based on morphologic facts50.

The steps involved in the recognition algorithm are:

1. Smooth the image using a Gaussian filter with a standard deviation of 6 pixels
(, 0.025 mm).

2. Binarize the image using a threshold that varies for different samples, leaving
only myelin/non-myelin objects.

3. Find the edges using a Canny edge detector51.
4. Extract contiguous regions with area larger than 5000 pixels (, 0.089 mm2);

this is a cut-off on the object’s area implemented in order to eliminate false
positives due to speckles.

5. Discard regions that have the ratio of perimeter to square root of area larger
than 6.2; this is a cut-off on circularity.

6. Discard regions where the ratio between the standard deviation and the mean
intensity of the pixels is larger than 0.5; this is a cut-off on uniformity.

7. Given the typical morphologic features of myelinated axons, discard regions
with contours having three or more large values of convex curvature. We
consider 0.03 pix21 (,7.11 mm21) as a large value of convex curvature; this
eliminates false positives recognized in areas surrounded by the myelin sheaths
of other axons.

Finally, in order to have the highest possible accuracy, a manual check is performed
to eliminate remaining false positives and mark possibly missed myelinated axons.

Statistical tools. We describe in the following the quantities that we consider for our
analyses. We determine the density and other quantities related to density (e.g.
fraction of occupied area). This allows us to test our axon recognition procedure
against the manual procedure used in Ref. 40, in which the density of myelinated
axons was previously determined. We note that a reduction in the number of
myelinated axons upon aging was previously observed40,52–54.

Starting from the positions of the centroids Ri of the myelinated axons in our
samples, we can also calculate different quantities related to their structure. The first
one is the distribution of nearest neighbors distances which can be plotted, by
building the histogram of the distances of the closest axon to every axon in the sample.
Similarly, the n-th nearest neighbors distance distributions can be obtained consid-
ering the histogram of the distances to the n-th neighbor.

The n-th nearest distribution is also used to extract the effective local density of the
sample. For a random set of points in an area (i.e. a random particle distribution
described by a homogeneous Poisson point process) with an uniform mean density
r . 0, the mean distance of the n-th nearest neighbor Ærnæ is given by55–57

rnh i~
1
ffiffiffiffiffiffi
pr
p

C nz1=2ð Þ
C nð Þ

, ð1Þ

where C(n) is the Gamma function (see Supplementary Note 1 for details). For large
n, this exact formula can be approximated by

rnh i<
ffiffiffiffiffiffi
n
pr

r
, ð2Þ

with a relative error smaller than 1.6% for n $ 8. Although Eq. (2) was derived for a
random set of points, this power law behavior for sufficiently large n is also observed
in our samples.

Considering Eq. (2), we expect the n-th nearest neighbor distance to increase with
the rank n, according to a power law. Therefore, we can estimate the density of the
system by fitting a line for large n, on the log-log plot of the n-th nearest neighbor
distance versus the rank n. We fit a line for the points n 5 8, 9, …, 15 and calculate this
‘‘regression’’ density (named effective local density) from the intercept of the linear
regression. In Fig. 6(a) and 6(b) we show illustrations of two samples with equal
densities but different effective local densities, due to the presence of a large axon-free
region. The calculation of the effective local density is illustrated in Fig. 6(c) for the
two particular samples shown in Fig. 6(a) and 6(b). We note that the effective local
density is calculated from the nearest neighbor distance behavior and, as such, it
provides a measure of the local density around axons.

We also construct the Voronoi tessellation of the embedding space as determined
by the spatial distribution of the centroids of the myelinated axons and study the
statistical and morphologic properties of the Voronoi cells of areaAi, see Fig. 1. In the
Voronoi tessellation, given a discrete spatial distribution of points Ri, in our case
identified with the centroids of the axons, the Voronoi cell associated to the point Ri is
defined as the set of points closer to the point Ri than to any other point of the
distribution. In practice, all the space is completely divided into convex non-over-
lapping polygons built around each centroid, where each polygon edge bisects the line
segments joining the respective centroid to its neighbors (i.e. Delaunay triangulation).
An interesting concept that can be investigated starting from the position of the axon
Ri and the Voronoi tessellation of the embedding space is the polygonality index (PI),
first defined in Ref. 44. The PI measures how close is the symmetry of the sample to a
well known ordered structure. In this case we compare our samples to a regular
triangular lattice, which corresponds to the 2D lattice of equal disks with the highest
density. Its Voronoi tessellation is a hexagonal tiling. Following Ref. 44, for each point
Ri (centroid of the axon) in the tessellation we measure the adjacent angles between
line segments joining Ri with the centers of neighboring Voronoi cells, i.e. the ones
with which it shares one side of the cell, which we label 1,2, . . . ,N i. The angles are
labeled a1,a2, . . . ,aN i

. Thus for each axon’s centroid Ri we define the quantity

Qi~
XN i

j~1

aj{b
"" "": ð3Þ

Choosing b 5 p/3 the comparison is made with a triangular lattice. In this case the PI
is called also hexagonality index (HI) and it is defined for each point Ri by

Di~
1

Qiz1
: ð4Þ

It follows that the mean HI is 1 for a perfect triangular lattice and it approaches 0 as
the points deviate more and more from a triangular lattice (the typical mean HI for
random samples is , 0.30).

In order to study in detail the size of the myelinated axons and their relation with
the environment constituted by the other myelinated axons we consider the areas of
the axons and the correlation between them, as well as the area of the respective
Voronoi cells and the correlations between them. For each axon/Voronoi cell we
calculate the average of the areas of the neighboring axon A0i

# $
/Voronoi cell A0i

# $
.

This is plotted against the area of the central axon Ai/cell Ai in consideration and a
linear regression is performed. The procedure is then repeated for the second shell of
neighbors, for which the average area is denoted A00i

# $%
A00i
# $

. We define the first shell
of neighbors of an axon as the set of axons contained in neighboring Voronoi cells.
Similarly, the second shell is defined by the set of axons contained in the neighboring
Voronoi cells of the first neighbors themselves.

Besides the positions of the axons, the shape of their cross sections may also change
with age. These morphologic changes may be due to alterations in the myelin
sheath40,50 or even due to the compression of axons caused by the close packing of
neighboring structures. Here we use six shape features to unveil if there are any
differences between myelinated axons in rhesus monkeys with distinct ages. They are:

Table I | List of the different monkeys used in this study with their

corresponding animal number and age, see Ref. 40. All the mon-

keys considered were female

Animal number Age (years)

AM 77 6
AM 129 7
AM 130 8
AM 100 25
AM 23 32
AM 41 32
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perimeter, elongation, circularity, diameter, mean curvature and bending energy as
defined in Ref. 41.

We present in Supplementary Table S1 all the features collected together with a
short description where appropriate.

Classification of samples and feature selection. In many biological studies, it is
common to quantify the relevance of a feature by using statistical tests. A typical
approach is to obtain the probability distributions for the feature in different types of
samples and then compare the statistical significance of the difference between their
mean. Here we take a different approach, we use the K-nearest neighbors classifier
with K 5 3 to find the accuracy of the measured features when used to classify the
samples in either of two classes (i.e. the young or old class). This approach has the
clear advantage that the obtained value can be easily interpreted. For example, an 84%
of accuracy for a feature means that in 84% of the cases the feature will correctly
identify if the sample comes from a young or old subject. To perform such a task, we
decided to use the K-nearest neighbors classifier mainly because of its simplicity and
its straightforward interpretation in terms of class assignment (i.e. young or old).

Also, this classifier has only one parameter: the number of neighbors. We repeat the
analysis for other classifiers and find little variation in the accuracy values obtained
using the K-nearest neighbors classifier (the other classifiers used were: Naive Bayes,
Bayesian Network, Logistic, C4.5, Classification And Regression Tree - CART and
Multilayer Perceptron).

Having measured a given set of features for all the samples, the classification
procedure is performed according to the following steps. We first standardize the
values for each feature by subtracting their mean and dividing by their standard
deviation. Then, we randomly divide the 67 samples in five different groups
(henceforth called folds), with the only restriction that each fold has, as far as possible,
the same percentage of samples from each class as the complete set. We use the
samples contained in four of the folds to train the classifier, i.e. to define regions in the
feature space that should be associated with each class. Next, we use the fold that was
excluded in the training to validate the classifier, that is to say, we test how many
samples in the excluded fold are correctly assigned to the class it originally belongs.
For the 3-nearest neighbor classifier, the class assignment is done by determining, for
each sample of the excluded fold, the first three neighbor samples belonging to the

Figure 6 | Effective local density calculation. (a) and (b) Illustrations of samples with equal densities (r 5 0.50) but different effective local densities. The
sample in figure (a) has an effective local density value of 0.49, similar to its density value, while the sample in figure (b) has a higher effective local
density value of 0.55, resulting from the axons (in red) being closer together due to the presence of a large axon-free region (in grey). (c) Plot of the average
n-th nearest neighbor distance as a function of the rank n for the two samples highlighted in figures (a) and (b). The full lines are the log-log linear
regressions for the points n $ 8 (see inset figure for a zoomed plot), extrapolated (dashed lines) to n 5 1, and with corresponding equations in the
matching colored boxes. The effective local density is calculated from the linear regression according to Eq. 2.
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training folds. We then assign the sample to the class of the majority of these three. We
repeat this procedure four more times, each time excluding a different fold from the
training in order to use it for validation. In the end, we have, for each fold, the number
of samples correctly assigned to its class. This in turn can be represented by a per-
centage of correctly classified samples, which we call the accuracy for the given set of
features. This process is called a stratified cross-validation and it is the most common
approach to estimate the performance of a classifier when the number of samples is
small. Finally, since there might be some variation in the accuracy value depending on
how the samples were divided, we run the cross-validation procedure five times, and
take the mean over the five runs. We note that increasing the number of runs does not
reduce the variance of the accuracy values found, meaning that five runs is enough to
obtain a reliable value for accuracy.

In order to find the set of features that can provide the best discrimination between
the young and old age groups, we employ the feature selection technique36–38,58. The
ideal situation would be to calculate the accuracy for every single set of features, and
keep only the set providing the largest accuracy. But since the number of possible sets
grows exponentially with the number of features, a heuristic is needed in order to
search for the optimal subset. The heuristic we use, known as best-first search47, starts
with the empty set and successively adds the features that provide the largest increase
in accuracy. When the search gets stuck in a local optimum, i.e. when there are no
more feature additions that can improve the accuracy, it jumps to a previously visited
set and it adds the feature providing the second best accuracy found. The search
continues until the number of allowed jumps is attained. In our case we allow 50000
jumps.

1. Bastiani, M. J., Harrelson, A. L., Snow, P. M. & Goodman, C. S. Expression of
fasciclin I and II glycoproteins on subsets of axon pathways during neuronal
development in the grasshopper. Cell 48, 745–755 (1987).

2. Cremer, H., Chazal, G., Goridis, C. & Represa, A. NCAM Is Essential for Axonal
Growth and Fasciculation in the Hippocampus. Mol. Cell. Neurosci. 8, 323–335
(1997).

3. Xue, Y. & Honig, M. G. Ultrastructural observations on the expression of axonin-
1: Implications for the fasciculation of sensory axons during axonal outgrowth
into the chick hindlimb. J. Comp. Neurol. 408, 299–317 (1999).

4. Wilson, S. W., Ross, L. S., Parrett, T. & Easter, S. S. Jr. The development of a simple
scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio.
Development 108, 121–145 (1990).

5. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin Expressed in
Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons. Cell
101, 657–669 (2000).

6. Sánchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A.
Oligodendroglia regulate the regional expansion of axon caliber and local
accumulation of neurofilaments during development independently of myelin
formation. J. Neurosci. 16, 5095–5105 (1996).

7. Gillespie, M. J. & Stein, R. B. The relationship between axon diameter, myelin
thickness and conduction velocity during atrophy of mammalian peripheral
nerves. Brain Res. 259, 41–56 (1983).

8. Chomiak, T. & Hu, B. What is the optimal value of the g-ratio for myelinated fibers
in the rat CNS? A theoretical approach. PLoS ONE 4, e7754 (2009).

9. Ceballos, D., Cuadras, J., Verdú, E. & Navarro, X. Morphometric and
ultrastructural changes with ageing in mouse peripheral nerve. J. Anat. 195,
563–576 (1999).

10. Elder, G. A., Friedrich, V. L. Jr., Margita, A. & Lazzarini, R. A. Age-related atrophy
of motor axons in mice deficient in the mid-sized neurofilament subunit. J. Cell
Biol. 146, 181–192 (1999).

11. Nielsen, K. & Peters, A. The effects of aging on the frequency of nerve fibers in
rhesus monkey striate cortex. Neurobiol. Aging 21, 621–628 (2000).

12. Pfefferbaum, A. et al. Age–related decline in brain white matter anisotropy
measured with spatially corrected echo–planar diffusion tensor imaging. Magn.
Reson. Med. 44, 259–268 (2000).

13. Cruz, L. et al. Age-Related Reduction in Microcolumnar Structure Correlates with
Cognitive Decline in Ventral but Not Dorsal Area 46 of the Rhesus Monkey.
Neuroscience 158, 1509–1520 (2009).

14. Cruz, L. et al. Age-Related Reduction in Microcolumnar Structure in Area 46 of
the Rhesus Monkey Correlates with Behavioral Decline. Proc. Natl. Acad. Sci. USA
101, 15846–15851 (2004).

15. Song, S.-K. et al. Diffusion tensor imaging detects and differentiates axon and
myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20,
1714–1722 (2003).

16. Hinton, D. R., Sadun, A. A., Blanks, J. C. & Miller, C. A. Optic-nerve degeneration
in Alzheimer’s disease. N. Engl. J. Med. 315, 485–487 (1986).

17. Moreno, R. D., Inestrosa, N. C., Culwell, A. R. & Alvarez, J. Sprouting and
abnormal contacts of nonmedullated axons, and deposition of extracellular
material induced by the amyloid precursor protein (APP) and other protease
inhibitors. Brain Res. 718, 13–24 (1996).

18. Schlaepfer, W. W. & Bunge, R. P. Effects of calcium ion concentration on the
degeneration of amputated axons in tissue culture. J. Cell Biol. 59, 456–470 (1973).

19. Blight, A. R. & Decrescito, V. Morphometric analysis of experimental spinal cord
injury in the cat: the relation of injury intensity to survival of myelinated axons.
Neuroscience 19, 321–341 (1986).

20. Xu, X. M., Guénard, V., Kleitman, N., Aebischer, P. & Bunge, M. B. A combination
of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell
grafts in adult rat thoracic spinal cord. Exp. Neurol. 134, 261–272 (1995).

21. Aguayo, A. J., David, S. & Bray, G. M. Influences of the glial environment on the
elongation of axons after injury: transplantation studies in adult rodents. J. Exp.
Biol. 95, 231–240 (1981).

22. Kao, C. C., Chang, L. W. & Bloodworth, J. M. B. Jr. Axonal regeneration across
transected mammalian spinal cords: an electron microscopic study of delayed
microsurgical nerve grafting. Exp. Neurol. 54, 591–615 (1977).

23. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M. & Weinshenker, B. G. Multiple
sclerosis. N. Engl. J. Med. 343, 938–952 (2000).

24. Raine, C. S., Hummelgard, A., Swanson, E. & Bornstein, M. B. Multiple sclerosis:
serum-induced demyelination in vitro. A light and electron microscope study.
J. Neurol. Sci. 20, 127–148 (1973).

25. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J.
Med. 338, 278–285 (1998).

26. Wujek, J. R. et al. Axon loss in the spinal cord determines permanent neurological
disability in an animal model of multiple sclerosis. J. Neuropathol. Exp. Neurol. 61,
23–32 (2002).

27. Stankovic, R. K., Shingde, M. & Cullen, K. M. The experimental toxicology of
metallic mercury on the murine peripheral motor system: a novel method of
assessing axon calibre spectra using the phrenic nerve. J. Neurosci. Methods 147,
114–125 (2005).

28. Stankovic, R. Atrophy of large myelinated motor axons and declining muscle grip
strength following mercury vapor inhalation in mice. Inhal. Toxicol. 18, 57–69
(2006).

29. Ayrancı, E., Altunkaynak, B. Z., Aktaş, A., Rağbetli, M.Ç. & Kaplan, S. Prenatal
exposure of diclofenac sodium affects morphology but not axon number of the
median nerve of rats. Folia Neuropathol. 51, 76–86 (2013).

30. Giese, K. P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. Mouse P0 gene
disruption leads to hypomyelination, abnormal expression of recognition
molecules, and degeneration of myelin and axons. Cell 71, 565–576 (1992).

31. Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer
mice: correction of the dysmyelinating phenotype. Cell 48, 703–712 (1987).

32. Craddock, R. C., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. Disease state
prediction from resting state functional connectivity. Magn. Reson. Med. 62,
1619–1628 (2009).
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