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Abstract

We calculate the Shannon entropy of a time series by using the probability density functions of the characteristic sizes of

the long-range correlated clusters introduced in [A. Carbone, G. Castelli, H.E. Stanley, Phys. Rev. E 69 (2004) 026105]. We

define three different measures of the entropy related, respectively, to the length, the duration and the area of the clusters.

For all the three cases, the entropy increases as the logarithm of a power of the size with exponents equal to the fractal

dimension of the cluster length, duration and area, respectively.
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The behavior of many complex systems is probed by detecting a variable over a certain temporal or
spatial range obtaining a record of the relevant observable as a function of time or space (e.g., time
series or character sequence). The challenge is to deduce detailed information from the data in order to
gain deeper physical insight into the system’s dynamics and the origin of complex behavior. In this regard,
the concept of self-organized criticality (SOC) has been used to explain why many systems behave like
nonequilibrium systems right at a phase transition temperature, spontaneously self-organizing themselves
into states characterized by algebraic correlations—unlike systems in equilibrium for which tuning is
essential [1–8].

The aim of this paper is to propose a method to calculate the entropy of a long-range correlated stochastic
sequence. Methods of calculation of the entropy of sequences have been proposed in Refs. [12–18]. The
entropy is usually calculated according to the well-known Shannon definition [9]:

SðxÞ � �
X

i

PðxiÞ log PðxiÞ. (1)

Here we calculate the entropy SðxÞ of the sequence by using the probability distribution functions (pdfs) of the
clusters introduced in Refs. [10,11].
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Consider a long-range correlated time series yðtÞ with correlation exponent H (Hurst exponent) [19].
In Refs. [10,11] it was shown that when the function

~ynðtÞ �
1

n

Z n

0

yðt� t0Þdt0 (2)

intersects yðtÞ, the fractional Brownian walk is partitioned in a sequence of elementary paths, with n denoting
the time window over which the integral (2) is calculated. Fig. 1 shows the function eynðtÞ with n ¼ 1000.

The length of the segment of the time series between two subsequent intersections between yðtÞ and eynðtÞ is
defined by

‘j;n �

Z tcð jþ1Þ

tcð jÞ

d‘ðtÞdt, (3)

where d‘ðtÞ is the length of each elementary step of the fractional walker. The pdf Pð‘Þ has been obtained by
counting the segments Nð‘1Þ;Nð‘2Þ; . . . ;Nð‘jÞ having, respectively, lengths ‘1; ‘2; . . . ; ‘j , up to a given value
of the index j, where

NðnÞ ¼
X

j

Nð‘j ; nÞ. (4)

The pdfs of the random variables ‘ is a power law:

Pð‘Þ�‘�ð2�HÞ, (5)

where the exponent 2�H coincides with the fractal dimension D of the time series. The intersection of the
functions yðtÞ and eynðtÞ generates a sequence of clusters besides the elementary paths discussed above. The
clusters correspond to the regions bounded by yðtÞ and eynðtÞ between two subsequent crossing points tcð jÞ and
tcð j þ 1Þ. The durations and areas of the clusters have been defined, respectively, by

tj �

Z tcð jþ1Þ

tcð jÞ

dt (6)

and

Aj �

Z tcð jþ1Þ

tcð jÞ

jyðtÞ � eynðtÞjdt. (7)
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Fig. 1. (Color online) (a) A fractional Brownian path (black), with H ¼ 0:5, and the functions eynðtÞ for n ¼ 1000 (red). (b) The function

CnðtÞ � yðtÞ � eynðtÞ for n ¼ 1000.
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The scaling relationships ‘t�t
c‘
n and At;n�t

cA
n hold, where ‘t;n and At;n are the values of the path length and

cluster area, obtained by averaging ‘j;n and Aj;n over the subset of paths/clusters having the same average
lifetime t. The pdfs PðtÞ and PðAÞ can be obtained, similarly to Pð‘Þ, by counting all clusters having,
respectively, duration t1; t2; . . . ; tj and areas A1;A2; . . . ;Aj up to a given value of the index j. The pdfs PðtÞ
and PðAÞ have been found to be, respectively [10,11]:

PðtÞ�t�ð2�HÞ (8)

and

PðAÞ�A�2=ð1þHÞ. (9)

The pdfs Pð‘Þ, PðtÞ and PðAÞ will be used to evaluate the entropy of the time series. In order to do so we
consider the Shannon entropy expression (Eq. (1)) where the probability distribution function PðtÞ is
introduced:

SðtÞ � �
X
mðtÞ

PðtÞ log PðtÞ (10)

and the sum is performed over elementary cells with size: mðtÞ ¼ t 2�H . The quantity mðtÞ represents the size of
the elementary cell spanned by a particle experiencing an elementary Brownian path between two subsequent
intersections tcð jÞ and tcð j þ 1Þ. Note that the elementary cell coincides, respectively, with a one-dimensional
line for H ¼ 1 and with a square for H ¼ 0. Using Eq. (8), Eq. (10) becomes

SðtÞ ¼ S0;t þ ð2�HÞ log t, (11)

where S0;t represents the constant term of the sum. Eq. (11) refers to the entropy that would be produced by
the Brownian walker in the absence of finite-size effects.

The entropies Sð‘Þ and SðAÞ, related, respectively, to the distributions of the cluster lifetime and area, can
be calculated as they were for the entropy SðtÞ. We obtain for the cluster length:

Sð‘Þ ¼ S0;‘ þ ð2�HÞ log ‘ (12)

and for the cluster area:

SðAÞ ¼ S0;A þ
2

1þH
log A. (13)

The probability distribution functions and the five exponents c‘, cA, a, b and g, are reported in Table 1. The
third column contains the expression of the entropy calculated according to the proposed approach. Note that
for the simple random walk, H is equal to 0.5 and the values of these exponents coincide with those of the
Dhar–Ramaswamy model [2].

A plot of SðtÞ is shown in Fig. 2 for different values of the fractal dimension D ¼ 2�H, respectively with
Hurst exponent H ¼ 0:0, 0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9 and 1.

The entropy takes the minimum value for t! 1, as expected for a system characterized by minimum
disorder. Conversely, when t increases, clusters of a huge range of sizes are generated, and PðtÞ spreads
resulting in the increase of entropy, i.e., in the increase of disorder. In the absence of finite-size effects, SðtÞ
behaves as log t.
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Table 1

Scaling relations, exponents and entropy relations

Scaling relations Exponents Entropy

Length ‘t�tc‘ c‘ ¼ 1 –

Area At�tcA cA ¼ 1þH –

Length pdf Pð‘Þ�‘�a a ¼ 2�H Sð‘Þ ¼ S0;‘ þ a log ‘
Lifetime pdf PðtÞ�t�b b ¼ 2�H SðtÞ ¼ S0;t þ b log t
Area pdf PðAÞ�A�g g ¼ 2=ð1þHÞ SðAÞ ¼ S0;A þ g log A
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It is worthy to point to the connection with the Boltzmann relation S ¼ S0 þ log O with O the phase space
volume. Bearing in mind that 2�H is equal to the fractal dimension D, the quantity ‘D corresponds to the
volume occupied by the fractal of length ‘. Therefore, the entropy Sð‘Þ, varying as the logarithm ‘D, expresses
the dependence on the fractal volume ‘D. Similar considerations hold for the entropies SðtÞ and SðAÞ. As
expected, all the three entropies decrease when H increases, in agreement with the fact that larger values of H

correspond to more ‘‘ordered’’ signals.
In summary, in this work we have put forward a link between the power-law scaling of a long-range correlated

series and the Shannon entropy using the pdfs of the clusters introduced in Refs. [10,11]. We obtain a family of
entropies, resp. Eqs. (11)–(13) increasing as the generalized volumes of the cluster sizes with exponent related to
the fractal dimension of the series. In particular, we find that anticorrelated time series, with Hurst exponent
0oHo0:5 are characterized by entropies greater than correlated time series having 0:5oHo1.
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Fig. 2. (Color online) Plot of the entropy SðtÞ � S0;t for different values of the fractal dimension D ¼ 2�H. It can be observed that the

entropy is larger for signals with larger fractal dimension, i.e., with smaller Hurst exponent.
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