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Emergence of dynamical complexity related to human heart rate variability
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We apply the refined composite multiscale entropy (MSE) method to a one-dimensional directed small-world
network composed of nodes whose states are binary and whose dynamics obey the majority rule. We find that
the resulting fluctuating signal becomes dynamically complex. This dynamical complexity is caused (i) by the
presence of both short-range connections and long-range shortcuts and (ii) by how well the system can adapt
to the noisy environment. By tuning the adaptability of the environment and the long-range shortcuts we can
increase or decrease the dynamical complexity, thereby modeling trends found in the MSE of a healthy human
heart rate in different physiological states. When the shortcut and adaptability values increase, the complexity in
the system dynamics becomes uncorrelated.
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I. INTRODUCTION

Physiological systems regulated by underlying mechanisms
associated with multiple spatiotemporal scales exhibit extraor-
dinary complexity with nonstationary and nonlinear behavior
[1–4]. A powerful entropy-based method—multiscale entropy
(MSE)—was developed to define the dynamical complexity
of a complex system, i.e., to express how well a complex
system can adapt itself to a challenging environment [5–7].
The algorithm has been widely applied to living systems
experiencing a variety of physiological states and pathologic
conditions over a range of temporal scales [5–15]. For
example, when we apply MSE to human heart rate variability
(HRV) we find that the HRV of healthy young adults exhibits
the highest complexity and that aging and disease reduce
that complexity [5–7]. The normal fetal HRV for a mature
gestational age exhibits a higher complexity than that for
earlier gestational ages [8]. However the mechanisms that
underlie (i) the high complexity for the healthy physiological
young state and (ii) the low complexity for the aging and
developmental states remain unknown.

Complex systems can be described topologically as com-
plex networks with nodes representing individual components
and links representing the interactions among them [16–19].
Small-world (SW) networks [19,20] have motivated studies
in different fields, such as human brains [21–26]. Exploring
collective dynamical behavior of the SW network through the
interplay between the intrinsic dynamics of the constituent
nodes and the topology is also important [27–42]. It is still
an open issue of how the dynamical complexity of a SW
system with fluctuating signals can be achieved and can be
physiologically related, especially when each node represents
a multicomponent complex system with its own regulatory
mechanism.

In this work, we report that in a one-dimensional directed
SW network composed of nodes whose states are binary
and whose dynamics obey the majority rule (see below),
the dynamical complexity of the SW network emerges by
applying a refined composite MSE algorithm [43]. Unlike the
conventional studies concerning the mean field of SW systems,

fluctuations from the mean field are emphasized here. We find
that the coexistence of short-range connections and long-rang
shortcuts and the presence of the system “adaptability” from
the noisy environment make the SW system reach high
dynamical complexity. Lower or higher adaptability decreases
the complexity of system. Increasing long-range shortcuts can
lead to the increase of system complexity. The change of
complexity by tuning the adaptability and long-range shortcuts
exhibits a trend similar to that found in the healthy human HRV
under different states, e.g., young, aging, and developmental
states. Further, both large values of adaptability and a great
amount of shortcuts make the fluctuation of the SW system
become uncorrelated. Such a simple model is suitable to
capture essential features of the more complicated processes
taking place in real physiological systems.

II. THE MODEL

To construct a directed SW network, we start with an
N -node one-dimensional ring, in which each node is connected
with its two nearest neighbors by two incoming and two
outgoing links. Instead of rewiring links with probability p
[19], we add excess long-range directed links (shortcuts) feN
in the ring structure by randomly choosing two nonconnected
nodes (thus fe is the mean excess degree). The average
incoming and outgoing degrees are equal to 2 + fe. Note that
the reason for adding directed links to the system is due to
the asymmetry in a real system. In this way, a network with
long-range directed shortcuts is obtained [for example, the
system size N = 100 and the mean excess degree fe = 0.2 in
Fig. 1(a)].

Second, the states of nodes in this SW network can simply
be one of two possible states, just as the excitatory and
inhibitory of neurons in brain, the increase and decrease of
respiratory rate, the elevation and drop of blood pressure, and
so on. Therefore, the state of every node i can be described
by a spinlike variable σi = +1 or −1. Then, the interactions
between nodes obey the majority rule. For each iteration, the
temporal state σi of node i at time t + 1 can be determined
according to the majority rule at time t , i.e., σi(t + 1) =
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FIG. 1. (a) An illustration of the structure of a one-dimensional
directed SW network, where the system size N = 100 and the
mean excess degree fe = 0.2. (b) The temporal state fluctuation of
nodes i = 1000, . . . ,2000 after waiting a transient 8192 time steps,
where N = 4096, fe = 0.2, and "n = 0.2. White and black regions
represent σi(t) = −1 and +1, respectively. (c) The system dynamical
behavior S(t) =

∑4096
i=1 σi(t), where fe = 0.2 and "n = 0.2.

sgn[#j{i}σj (t)], where the sum runs over the connected nodes
σj at time t . If the sum equals zero, node i keeps its own state;
i.e., σi(t + 1) = σi(t).

Third, the adaptability ("n) of the SW system to the noisy
environment is introduced and also can be interpreted as the
noise strength. Each link from node j to i has a probability
"n to be assigned one of two possible states ±1, chosen
at random with probability 1/2, instead of transmitting the
true signal. In other words, at each time step, there are "n ×
(2N + feN ) links randomly chosen to fail to communicate
signals between nodes, but these links can still receive the
stimulus from the environment. Why is the adaptability "n

defined in such a way? In the noisy environment, a healthy
system should be able to adapt itself by carrying “noisy”
information within the interactions between nodes. The system
allows the communication between nodes affected by external
noisy stimulus [44]. This explains why a healthy system
with a proper adaptability "n exhibits high complexity in a
challenging environment [5–7].

III. METHODS

We choose system size N = 4096. Initially, the state
σi(t = 0) of each node i = 1, . . . ,4096 is randomly chosen
to be +1 or −1. Waiting for a transient period lasting
8192 time steps, we then record the temporal node states
for an additional 60 000 time steps. Figure 1(b) shows the
temporal state fluctuation of some nodes i = 1000, . . . ,2000,
where fe = 0.2 and "n = 0.2. Here, the dynamical behavior
is defined as S(t) =

∑4096
i=1 σi(t). Figure 1(c) is the system

dynamical behavior S(t) when fe = 0.2 and "n = 0.2.

We are interested in the fluctuation of S(t) which is
processed by the empirical mode decomposition (EMD)
method, a nonlinear, nonstationary signal processing tool [45].
The basic idea of EMD is to decompose the original time signal
into components, namely, intrinsic mode functions (IMFs),
which are suitable for defining a meaningful instantaneous
frequency. These IMFs have the same numbers of extrema
and zero crossings, and they are symmetric with respect
to local zero mean. The extraction of IMFs is achieved by
means of a decomposition based on the assumptions that the
signal has at least one maximum and one minimum. After
applying the EMD method, the signal S(t) can be expressed
as S(t) =

∑n
i=1 IMFi + rn, where the final residue rn can be

interpreted as either the mean trend of S(t) or a constant value.
Thus, the fluctuating signal S ′(t) =

∑n
i=1 IMFi = S(t) − rn is

calculated and then used to identify the dynamical complexity
of the SW system by a refined composite MSE method [43].

The MSE method [5–7] quantifies the dynamical com-
plexity from fluctuating time series by the following steps.
(i) Coarse-grained time series are constructed by dividing the
original time series into nonoverlapping windows of length
τ and averaging data points inside each window. (ii) For
each coarse-grained time series, the sample entropy (Sam-
pEn) quantifying the regularity is calculated. It reflects the
conditional probability that two sequences of m consecutive
data points which are similar to each other will remain similar
when the next point is included. The sample entropy of a given
sequence x(t) is defined as the natural logarithm of the ratio of
nm to nm+1, i.e., SampEn[x(t),m,r] = − ln(nm+1/nm), where
r is the a predefined tolerance, and nm+1 and nm are the total
number of (m + 1)- and m-component matches, respectively.
Then, the SampEn is plotted as a function of the time scale
factor τ .

Recently, a refined composite MSE (RCMSE) was devel-
oped in order to improve the accuracy of the MSE due to the
coarse-graining procedure reducing the length of a time series
considerably at large scales [43]. In this paper, all sample
entropies are given by the RCMSE algorithm with the same
conditions in [6] (m = 2, r = 0.15).

IV. RESULTS

How does the complexity of a healthy subject look
physiologically? The clinical cardiac interbeat (RR) interval
time series of healthy subjects were gathered from 24-hour
Holter monitor recordings of 72 healthy subjects with ECG
data sampled at 128 Hz (from the PhysioNet database [46,47]).
We choose two control groups from the database: (i) 14 young
subjects, 7 men and 7 women, aged 30.5 ± 4.4 years (mean
± SD), range 20–35 years, and (ii) 16 elderly subjects, 9 men
and 7 women, aged 70.0 ± 3.1 years (mean ± SD), range
68–76 years. Within the 24-hour data, only the data for the
groups during waking period are focused by extracting the
segments of 3 × 104 consecutive data points with highest heart
rate. Similarly, we apply each RR series to the EMD method
(n = 13), and obtain the revised RR series (RR′ =

∑8
i=1 IMFi)

by removing the trend (in this case, the last five modes and rn)
[11].

Figure 2(a) shows the sample entropy of the revised RR
series (RR′) of healthy young subjects using the RCMSE
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FIG. 2. (Color online) (a) The sample entropy (SampEn) of
revised RR′ time series of 14 healthy young people during waking
period, 7 men and 7 women, aged 30.5 ± 4.4 years (mean ± SD),
range 20–35 years. Symbols represent the average values of sample
entropy, and the bars are the standard error. The time series length
is 3 × 104 beats. (b) The black circles showing the sample entropy
of fluctuating S ′(t) by RCMSE from scale factor τ = 10–400, where
fe = 0.2, "n = 0.1, and the rescaled τ ′ is given by dividing τ by
20. The red squares depict the entropy results from the shuffled S ′(t).
Each symbol is averaged by ten rounds. The bars are the standard
error.

method for different time scale factors τ = 1–20. For large
scales [e.g., τ ! 5; Fig. 2(a)], the RR′ series of healthy young
subjects are assigned the highest entropy values. The sample
entropy value reaches about 1.75 at large τ . Figure 3(a) is the
comparison of sample entropy of RR′ series between young
and elderly groups. It shows that an aging healthy subject leads
to loss of complexity, i.e., the lower entropy values over all
scale factors.

Does our SW model exhibit such a phenomenon in which
its complexity remains high or decreases under different
parameters? In Fig. 2(b), black circles show the sample entropy
of S ′(t) from the RCMSE method for τ = 10–400, where
fe = 0.2, "n = 0.1, and the rescaled τ ′ is given by dividing
τ by 20. Each circle is the mean value obtained by averaging
ten rounds under the same condition. The error bars are the
standard error. The red squares in Fig. 2(b) depict that the
entropy drops to zero are large scales once the S ′(t) is shuffled.
Note that in the simulation, we do not introduce any specific
time scales. By rescaling the scale factors from τ to τ ′, the
entropy value of S ′(t) in Fig. 2(b) at large scales is similar
to that of RR′ of healthy subjects shown in Fig. 2(a). It is
interesting to see, once the scales are fixed, how the complexity
of the SW system evolves when fe and "n change.

In Fig. 3(a), a healthy system with aging leads to the loss
of complexity over different time scales. The system loses
its adaptability for a challenging environment. In our model
[Fig. 3(b)], the entropy of S ′(t) decreases when "n < 0.1.
It means that when the SW system loses its adaptability to
a noisy environment, its dynamical complexity can decrease
also. Will the complexity increase if the system allows "n >

FIG. 3. (Color online) (a) The sample entropy (SampEn) of
revised RR′ series of 14 healthy young subjects (blue circles) and the
16 healthy elderly subjects (wine squares) during waking period. The
16 healthy elderly subjects are 9 men and 7 women, aged 70.0 ± 3.1
years (mean ± SD), range 68–76 years (t-test, p < 0.05). Symbols
represent the average values of sample entropy, and the bars are the
standard error. The time series length is 3 × 104 beats. The entropy
of elderly subjects is lower than that of young subjects over all scale
factors. (b) and (c) The sample entropy of S ′(t) for "n = 0.05–0.10,
"n = 0.10–0.22, and "n = 1.0, where fe = 0.2, τ = 10–400, and
the rescaled τ ′ is given by dividing τ by 20. Each symbol is averaged
by ten rounds. The bars are the standard error.

0.1? Figure 3(c) shows that the entropy will increase first to
about 2.0 at τ ′ = 20 when "n > 0.1, but then it will decrease
when "n is larger. Eventually, S ′(t) is uncorrelated at "n =
1.0, and the entropy drops close to zero at large τ ′.

Figure 4 shows the complexity index by summing sample
entropy in Figs. 3(b) and 3(c), where black squares and blue
circles represent the sum of the entropy from τ ′ = 1–10 and
τ ′ = 11–20, respectively. We find that the SW system can
exhibit high complexity with large entropy under a proper
range of "n. Above or beyond the proper range of "n, the
complexity of the SW system will decrease.

Another interesting question is how a healthy subject
increases its complexity when it is in its developmental state.
Physiologically, for example, the normal fetal HRV at mature
gestational age exhibits higher complexity than that at earlier
gestational age [8]. Intuitively, this means that the coupling
strength increases when the system grows. Thus, in our model,
the increasing coupling strength is represented as the increase
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FIG. 4. (Color online) The complexity index obtained by sum-
ming the area of sample entropy in Figs. 3(b) and 3(c). Squares and
circles represent the range for τ ′ = 1–10 and 11–20, respectively. The
bars are the standard error.

of long-range shortcuts when the complex system develops.
Figure 5(a) depicts how we develop an N = 100 SW system
by adding fe. The SW network at fe = 0.12 in the middle panel
of Fig. 5(a) is constructed by adding %feN to the SW network
at fe = 0.08 in the left panel, where %fe = 0.04. Adding next
%feN shortcuts to the SW network at fe = 0.12 leads to the
SW network in the right panel of Fig. 5(a). Figure 5(b) is
the corresponding sample entropy for fe = 0.08, 0.12, 0.16,
and 0.20. It is found that the complexity increases when fe

increases at fixed "n. Note that when fe = 1, the complexity
drops fast and is less correlated. The effect of larger fe is
similar to the effect of large "n.

V. DISCUSSION

Through the interplay between the intrinsic dynamics of the
nodes and SW topology, the dynamical behavior of SW system
can be observed. The ferromagnetic transition in SW networks
with the Ising model [28–30], the epidemic spread and opinion
formation in SW social networks [31–36], the self-sustained
synchronization in SW neuron networks [37–40], and 1/f
fluctuating signals in SW Boolean networks [41,42] are good
examples.

In this work, the dynamical complexity of a SW system
with fluctuating signals is achieved and can be physiologically
related to human heart rate variability. We constructed a one-
dimensional directed SW network composed of binary nodes
whose interactions obey the majority rule. The dynamical

FIG. 5. (Color online) (a) The panels of how to develop a SW
network by adding %feN long-range links to make fe = 0.08 (left),
0.12 (middle), and 0.16 (right), where N = 100 and %fe = 0.04. (b)
The corresponding sample entropy (SampEn) of S ′(t) for fe = 0.08,
0.12, 0.16, 0.20, and 1.00, where "n = 0.10, τ = 10–400, and the
rescaled τ ′ is given by dividing τ by 20. Each symbol is averaged by
ten rounds. The bars are the standard error.

complexity can be observed by focusing on the fluctuation and
applying the RCMSE analysis. (i) The existence of long-range
links and the proper adaptability "n of a noisy environment
lead to high complexity. (ii) The increase and decrease of
"n result in the drop of complexity. Only a proper regime of
adaptability allows the SW system with high complexity. For
"n = 1, the fluctuating signal becomes uncorrelated. (iii) The
increase of fe also leads to the increase of complexity, similar
to a developing healthy system. A larger fe also leads to the
loss of complexity. The effect of larger fe is similar to the
effect of larger "n.
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