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According to Bloch’s theorem, electronic wavefunctions in per-
fectly ordered crystals are extended, which implies that the
probability of finding an electron is the same over the entire
crystal1. Such extended states can lead to metallic behaviour. But
when disorder is introduced in the crystal, electron states can
become localized, and the system can undergo a metal–insulator
transition (also known as an Anderson transition)2–4. Here we
theoretically investigate the effect on the physical properties of
the electron wavefunctions of introducing long-range corre-
lations in the disorder in one-dimensional binary solids, and
find a correlation-induced metal–insulator transition. We per-
form numerical simulations using a one-dimensional tight-bind-
ing model, and find a threshold value for the exponent
characterizing the long-range correlations of the system. Above
this threshold, and in the thermodynamic limit, the system
behaves as a conductor within a broad energy band; below
threshold, the system behaves as an insulator. We discuss the
possible relevance of this result for electronic transport in DNA,
which displays long-range correlations5,6 and has recently been
reported to be a one-dimensional disordered conductor7–10.

The tight-binding model of a solid is characterized by a hamil-
tonian in which one orbital (single electron) and a single energy 1i

are assigned to each lattice site i

H ¼
i

X
1ijilkij þ

ki;jl

X
tjilkjj ð1Þ

where t is the electronic overlap (hopping term) between the
wavefunctions of electrons centred at two neighbouring sites i, j.
For a perfectly ordered crystal, all site energies 1i have the same
value or follow a periodic pattern. For disordered solids, 1i can be
randomly chosen from a certain probability distribution—for ex-
ample, a uniform distribution or a gaussian. The probability
distribution generating 1i is characterized by a parameter W
which quantifies the spread of the distribution, and thus the degree
of disorder. In the case of a uniform distribution W is the
distribution width, whereas in the case of a gaussian distribution
W is the standard deviation. Models for one-dimensional (1D)
disordered solids traditionally consider only two parameters of
interest, namely the interaction term between nearest neighbours,
t, and the disorder of the system, W. Thus the controlling parameter
is the ratio W/t. Typically, t is fixed (for example, t ¼ 1), thus fixing
the energy scale in the system, and W is changed to study the effects
produced by different levels of disorder.

In the limit W ! 0, where the coupling energy t between
neighbours dominates, a perfect lattice is recovered, and Bloch’s
theorem applies: there are extended electron states, and the system
can conduct1. This is valid for finite system size only, because
localization theory asserts that in the limit of large systems all
electron states are localized in the 1D case3. For sufficiently large W,
where the disorder dominates, the wavefunctions are strongly
localized. This localization phenomenon depends on the system
dimension. For three-dimensional (3D) systems at zero tempera-
ture, T ¼ 0, there is a critical value Wc for which a metal–insulator
transition occurs11,12. For a uniform distribution, Wc ¼ 16.5. For
W , Wc, despite some degree of disorder, the electron wavefunc-
tions are extended, and the system behaves as a metal, whereas for
W . Wc, the wavefunctions become localized, and the system
behaves as an insulator. For two-dimensional (2D) and 1D dis-
ordered systems even infinitesimal disorder produces localized
states3, so at T ¼ 0 the system behaves as an insulator in the
thermodynamic limit, although for some particular cases in two
dimensions it is possible to find a metal–insulator transition13–15.

We consider the case of a 1D system, and show that randomly
chosen but long-range correlated {1i} can lead to extended wave-
functions and thus to conductivity, in contrast to the expectation—
based on the assumption of uncorrelated disorder—that no
extended states can be found in 1D disordered systems at T ¼ 0
(ref. 1). Traditionally, localization of the electron wavefunction in
one dimension is considered to be unaffected by the form and width
of the distribution from which the {1 i} are chosen. Although all
proofs establishing localization in one dimension are model-depen-
dent, exponential localization of all eigenstates in one dimension is
believed to occur at T ¼ 0 (refs 16–18). In this case, electron
wavefunctions are of the form WðxÞ ¼ f ðxÞ expð2jx 2 x0j=lÞ;
where f(x) is a random function which depends on the particular
realization of the disordered chain, and l is the localization length,
which is a measure of the size of the wavefunction.

The simplest 1D model exhibiting Anderson localization is the
random binary alloy19, where there are two types of atoms, A and B,
and two different diagonal energies, 1A and 1B. To build the series of
diagonal energies of the hamiltonian (equation (1)), 1A and 1B are
assigned at random to each lattice site with probabilities p and
1 2 p, respectively. For the random binary alloy, the corresponding
wavefunctions are localized and the system behaves as an insulator
(Fig. 1a).

We now show that introducing correlations in the disorder can
markedly change the physics. The first attempt to introduce corre-
lations into the random binary alloy model was the random dimer
model20,21. In this model, short-range correlations are introduced by
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assigning a dimer AA with probability p, and a monomer B with
probability 1 2 p. The main property of the random dimer model is
that there exists a particular energy (the resonant energy of the
dimer) for which there is perfect electron transmission through the
system. Wavefunctions corresponding to energies close to this
resonant energy behave as extended states20,21, although they do
not form an energy band.

A recent attempt to introduce long-range correlations in 1D
systems utilizes {1i} drawn from a continuous probability distri-
bution22. Because in this case the fluctuations in the diagonal
energies (and thus the disorder in the system) increase with the
system size, this work was limited to finite systems, and found

 

Figure 1 Wavefunctions for periodic, disordered and correlated-disordered chains.

a, Typical wavefunctions for a periodic binary chain (dashed line) spreading over the

whole system and for a random binary alloy (solid line) localized in a small region. Both are

calculated for a system of size N ¼ 300 atoms, and for 1A ¼ 1/2 and 1B ¼ 21/2. The

wavefunctions are obtained by means of numerical diagonalization of the hamiltonian

(equation (1)). b, Top panel: energy profile realization for a binary chain of N ¼ 512 atoms

with correlation exponent a¼ 1:2 , ac: Bottom panel: two typical wavefunctions

corresponding to a localized and a nearly extended state obtained by numerical

diagonalization of the hamiltonian for the profile shown in the top panel. The localized

state (dashed line) which corresponds to an energy E ¼ 21.5372, randomly chosen

outside the conducting band [21.5, 1.5], is different from zero only inside a cluster of

identical B atoms with 1B ¼ 21/2 shown in the top panel. Out of this cluster the

wavefunction becomes zero, indicating that the electron is localized and confined inside

the cluster — a behaviour typical of disordered systems. However, for the nearly extended

state, which correspond to an energy E ¼ 0.05421 inside the central band, a very strong

coupling mechanism among different correlated clusters is observed, and the

wavefunction (solid line) is clearly different from zero almost everywhere, indicating

delocalization of the electron even when a , ac. This coupling mechanism is

responsible for the electronic delocalization, and it only occurs in the presence of

correlations and for electron states corresponding to the central energy band. The vertical

scale on the left axis corresponds to the extended wavefunction, and the right axis to the

localized one.

 

Figure 2 Localization length behaviour in correlated-disordered chains. a, Behaviour of

the localization length l as a function of energy E for several values of the correlations.

The horizontal dashed line corresponds to the fixed system size N ¼ 215 < 3 £ 104. For

a < 1.4 we find a threshold above which extended (delocalized) states with l < N exist

in the central region of the energy band [1 A 2 2t,1 A þ 2t] > [1 B 2 2t,1 B þ 2t]. As

t ¼ 1, 1 A ¼ 21 B ¼ 1/2, this energy band is [21.5,1.5]. b, Scaling relation l / N g

for different values of the correlation exponent a. This behaviour is identical for all energy

values in the central band 2 1.5 , E , 1.5. We show results for E ¼ 0 and E ¼ 1

while keeping the disorder parameter fixed at W ¼ 1. To avoid numerical fluctuations, l

is averaged in a small window of width DE ¼ 0.1 around each energy value. N ranges

from 28 to 218 atoms. The solid lines correspond to fits of the type l / N g, from where

the exponent g is obtained. For a random binary chain with a ¼ 0.5, l remains constant

for all values of N and correspondingly g ¼ 0. For a correlated binary chain with a . ac

we find g ¼ 1, indicating that above the ‘critical point’ of the metal–insulator transition

the localization length is of the size of the system N. Note that, although l is smaller for

E ¼ 1 compared to E ¼ 0 for all a, the exponent g remains unchanged. Thus the

observed quantum insulator–metal transition is indeed valid in the thermodynamic limit

and for a broad energy band. c, l as a function of N for different degrees of disorder

W ; j1 A 2 1 Bj and for fixed E ¼ 0. Although the system with higher disorder (filled

symbols) exhibits shorter localization lengths for all system sizes, the scaling property

l / N g is not altered with W, for all values of a. Thus independently of W (provided there

is an intersection between the bands of A and B) the system exhibits an insulator–

conductor transition for a . ac in the thermodynamic limit.

letters to nature

NATURE | VOL 418 | 29 AUGUST 2002 | www.nature.com/nature956 © 2002        Nature  Publishing Group



extended states with increasing strength of the correlations only for
E ! 0. In order to control the disorder and to maintain the spread
of the density of states, a normalization to unit standard deviation is
needed, which ultimately eliminates the correlations in the 1i and
produces a series of energies that tend to be constant23.

We propose a binary 1D model of correlated disorder, which
generates a broad energy band of extended states and leads to
conductivity even in the thermodynamic limit of large system size.
For a perfectly ordered 1D system with atoms of only type A, the
energy spectra of the solid form a single energy band ½1A 2 2t;1Aþ
2t�;W/t ¼ 0, and we have a perfect conductor. For a random binary
solid, W ; j1A 2 1Bj: The closer the values of 1A and 1B are, the
smaller is the ratio W/t, and the conducting properties of the
disordered solid become similar to those of the perfectly ordered
solid. The larger W is, the stronger is the localization. We choose
W/t ¼ 1, and we have strong localization in the case of pure
disorder. For long-range power-law correlations in the diagonal
energies 1i, we still have W/t ¼ 1. Thus, we are able to obtain
extended states by keeping the level of disorder fixed, which allows
conducting behaviour in the thermodynamic limit and in a broad
energy band.

We generate binary sequences with long-range correlations using
the modified Fourier filter method24, and we use these sequences as
the {1i} in the binary chain. The algorithm generates random noise
in the frequency domain, multiplies this noise by a power-law with
the desired exponent, and then Fourier-transforms the signal back
into real space. As we must generate a binary sequence, we consider
a transformation which maps any positive value of the correlated
series into 1A, and any negative value into 1B. Such a mapping can
change the correlation properties of the series, and therefore the
correlations are not properly quantified by the power-law exponent
in the original correlated series. To quantify the correlations in the
final binary sequence, we calculate the scaling exponent a using
detrended fluctuation analysis25,26. A value of a ¼ 0.5 corresponds
to an uncorrelated random sequence (white noise). If a , 0.5, the
binary sequence is anticorrelated, while if a . 0.5, there are positive
long-range correlations (Supplementary Information).

Next, we study the effect of long-range power-law correlations on
the localization properties of disordered binary chains. We calculate
l using the transfer matrix method11. The Schrödinger equation for
the hamiltonian (equation (1)) becomes

Ewn ¼ twn21þ 1nwnþ twn21 ð2Þ

where E is the energy corresponding to the electron wavefunction,
jwnj

2 is the probability of finding an electron at site n in the chain,
and 1n ¼ 1A or 1B (Fig. 1b). Using the transfer matrix method, we
write equation (2) in the recursive form:

Mn

wn

wn21

 !
¼

wnþ1

wn

 !
; Mn ¼

E 2 1n 2t

t 0

 !
ð3Þ

The localization length l(E) is then defined by

1

lðEÞ
¼

N!1
lim

1

N
ln

wN

w0

���� ���� ð4Þ

where N is the chain length. We choose w0 ¼ w1 ¼ 1=
ffiffiffi
2
p
: For every

realization of the potential we apply equation (3) to obtain wN, and
we calculate l(E) from equation (4). We average l over a large
ensemble of realizations for a fixed system size N and fixed value of
the energy E. We repeat this procedure for different values of N and
E.

Our results for l show that correlations in the sequence of {1i} in
the binary chain strongly modify the localization properties of the
wavefunctions (Fig. 2). For a ¼ 0.5 and fixed N, we obtain the
shortest localization length as a function of E, which corresponds to
the result for a random binary alloy19. We find that long-range
correlations (a 0

. 0.5) change drastically the localization proper-

ties of the electronic states. When we increase the long-range
correlations in the chain, l increases in the central region of the
energy band, and eventually, for a fixed N, we find a critical value a c

above which l . N, which corresponds to extended wavefunctions
(Fig. 2a). The energy region ½1A 2 2t;1Aþ 2t�> ½1B 2 2t;1Bþ 2t�
in which this increase of l takes place is precisely the overlap of the
energy bands corresponding to ordered chains formed only by A
atoms and only by B atoms, so we obtain a broad band of extended
states. In the random dimer model20,21, there is only a single energy
value that corresponds to an extended state, implying that the
probability of an electron having precisely this energy is small for

Figure 3 Density of states and scaling exponent as a function of the correlations. a,

Density of states as a function of energy for three different values of the correlation

exponent a and for N ¼ 216. As the strength of the correlations increases (that is, larger

values of a), there is (1) a migration of electron states to the central region 21:5 ,

E , 1:5 where the delocalization takes place, and (2) the density of states approaches

the form expected for a system of two semi-infinite clusters of type A and B—four peaks

with central conducting region (Fig. 2a). This reflects the fact that with increasing a the

probability of finding large clusters of type A or type B in the system with correlated

disorder also increases, although clusters of all sizes are present (Supplementary

Information). We find that the delocalized states (conducting electrons) form a substantial

fraction of the total number of electron states, and that this fraction increases with a—

52.5% for a ¼ 0.5, 57.8% for a ¼ 0.9 and 66.6% for a ¼ 1.5. For given a the fraction

of delocalized states remains the same with varying system size N. Thus for a . ac the

majority of electron states are extended and the system exhibits metallic behaviour. b, The

scaling exponent g as a function of a. The value g ¼ 1, which corresponds to extended

(delocalized) electron states in the limit N ! 1, is obtained for a < 1.45, suggesting a

critical point at which there is transition from insulating to metallic behaviour. Note that the

observed enhanced conductivity and quantum metal–insulator transition in 1D binary

systems with long-range correlations is not a trivial consequence of the presence of long

repetitive sequences of atoms of type A followed by long repetitive sequences of atoms B,

provided the energy bands of A and B overlap. Even in the presence of very strong

correlations, there is a mixture of both small and large clusters of type A and B. This is not

surprising, as the correlations we introduce in the system are power-law long-range

correlations, and thus the energy profile is self-similar on different size scales. Our results

suggest that this self-similar organization of clusters of different size can lead to extended

states and metal–insulator transition.
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finite systems, and becomes zero in the thermodynamic limit of
large system size. In contrast, long-range power-law correlations
produce a broad conducting energy band. Moreover, the population
of this central band increases with the correlations, ranging from

52% for a ¼ 0.5 to 67% for a ¼ 1.5 (Fig. 3a). Thus, the probability
of an electron propagating throughout the system, which is pro-
portional to the width of the conducting energy band, is not small,
and the conducting behaviour resembles a metal.

To speak properly of extended states, we need the condition
limN!1ðl=NÞ ¼ constant – 0: If this condition is not fulfilled, l
becomes negligible in comparison to N in the thermodynamic limit
N ! 1, and the wavefunction is therefore localized. Hence, we next
study the behaviour of l as a function of N for different values of the
correlations. As l is also a function of the electron energy E, we
choose E ¼ 0—that is, the central energy of the band. To avoid
excessive numerical fluctuations, we average l in a small energy
window around E ¼ 0, specifically the interval [20.05,0.05]. We
find a power-law relation between l and N, l / Ng (Fig. 2b, c),
where the exponent g depends on the correlation exponent a (Fig.
3b). Our results for the values of l(E) (Fig. 2a) indicate a nearly flat
plateau covering the central energy band, suggesting that a similar
relation between l and N can be expected for every other value of E
in this energy interval. Indeed, for all E [ ½21:5;1:5� we find the
same values of g (Fig. 2b).

Further, we find that g is also independent of W (Fig. 2c). As W is
fixed, introducing power-law correlations in the chain leads to re-
ordering of the diagonal energy values 1i to produce clusters the
sizes of which are power-law distributed (Supplementary Infor-
mation), and at the same time not changing the level of disorder
when N varies. We find that a change in Wmodifies the values of l: l
decreases with increasing W. But owing to the power-law corre-
lations, the fraction l/N remains constant when N ! 1 (note the
constant vertical shift in Fig. 2c), while the scaling relation, l/Ng;
does not change with W. Thus, in the thermodynamic limit, this
scaling behaviour is independent of the level of disorder.

For values of a < 0.5 we find that g < 0, so we have localized
states. As a increases, g also increases; for a $ 1.45 we obtain g ¼ 1
within our error bars (Fig. 3b). Therefore, at T ¼ 0 and in the limit
N ! 1, for a , 1.45, the system behaves as an insulator, while for
a . 1.45 the system behaves as a conductor within a broad energy
band. For a¼ ac ¼ 1:45; we find a new ‘critical point’ at which a
quantum metal–insulator transition occurs.

These findings can be used to better understand the conduction
properties in 1D disordered binary solids, which are important for
practical applications such as the construction of nanoscopic
electronic devices9. Electrical conduction in biological macromol-
ecules, in particular DNA, has also attracted much attention. Recent
work has shown that electrons or holes are responsible for the
electrical current in DNA7–10. Moreover, it has been observed that
certain mutation repairs occur in natural DNA by means of
electrical current transport along the molecule27. Experiments of
DNA conductivity find conducting7,28, semiconducting9 and insu-
lating29 behaviour, due perhaps to the different type of DNA
sequences considered—random, repetitive or correlated. An open
question is the influence of the ‘ordering’ (that is, correlations) of
the DNA nucleotides on the conduction properties of the sequence.

In DNA, correlations with exponent a < a c do not exist. Typical
values of a in DNA range between 0.6 and 0.9 (refs 5, 6), which are
below ac but are significantly greater than the value of 0.5 for purely
random sequences. Our results show that such long-range corre-
lations can strongly affect the electronic transport over relatively
large distances. In particular, we consider a sequence of 50,000
nucleotides of the largest contig of human chromosome 22 (Fig. 4).
We find that for non-repetitive regions with long-range corre-
lations, the localization length obtained with our model when the
DNA is mapped onto a binary chain is between one and two orders
of magnitude greater (Fig. 4a) than that expected for a random
sequence (Fig. 2a, b). This behaviour is also reflected in the fact that
we obtain nearly extended wavefunctions for all energy values from
the central band of the DNA sequence (Fig. 4b). Recent experiments
show that random DNA is not a good conductor29, whereas

Figure 4 Results in DNA. a, l as a function of the position in a DNA sequence. We

present the following experiment: (1) We select a DNA sequence corresponding to the first

50,000 nucleotides of the largest contig (a perfectly sequenced region without gaps) of

human chromosome 22 (NT_011520) retrieved from the National Center for

Biotechnology Information (NCBI). (2) We map this sequence onto a binary alphabet so

that nucleotides A and T gives 1A ¼ 1/2 and nucleotides C and G give 1B ¼ 21/2 to

construct the diagonal energies in the hamiltonian (equation (1)). (3) We divide the

sequence into overlapping subsequences of size N ¼ 300, one for each nucleotide in the

original DNA sequence (that is, for nucleotide i we consider the subsequence between

[i,i þ 299]), and we calculate l for E ¼ 0 and for each i. (4) We plot l as a function of the

sequence position i. Note that there is a certain region of non-repetitive DNA comprising

N < 8,000 nucleotides and characterized by strong long-range correlations with

a < 0.9. For this region, we find that l is on average ten times greater compared to the

neighbouring segments of DNA where there are no strong correlations, and compared to a

surrogate random sequence (horizontal dashed line). Thus electron transport in DNA can

be clearly enhanced owing to long-range correlations, leading to conductivity over DNA

segments comprising hundreds or even thousands of nucleotides. Looking for segments

of DNA from the human chromosome 22 which have similar correlation properties and

enhanced electron transport, we found that the biological function of these segments is

not provided and is not known. Perhaps the patterns formed by segments with particular

conduction (correlation) properties can provide a clue to understanding their biological

function. b, Two wavefunctions corresponding to a subsequence of length N ¼ 300

located at i ¼ 15,000, as described in a. The wavefunctions are obtained by numerical

diagonalization of the hamiltonian in equation (1) with diagonal energies corresponding

precisely to these 300 nucleotides. The solid line (left vertical axis) represents a nearly

extended state corresponding to an energy value E ¼ 20.17753 from the central band

[21.5, 1.5], and the dotted line (right vertical axis) shows a strongly localized state

corresponding to E ¼ 1.55761 outside the central band. Whereas the localized state is

confined within ,30 base pairs, the extended state allows for an electron transport

throughout the sequence. Moreover, because l exceeds the size of the segments with

correlated disorder, the electron wavefunction overlaps with parts of the neighbouring

uncorrelated disordered segments and can affect their conducting properties, thus

facilitating important genomic functions27. Note the similarity between this plot obtained

for DNA and the wavefunction in Fig. 1b obtained for a computer-generated correlated

binary sequence.
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repetitive DNA conducts quite well30—both cases are in agreement
with our model (Figs 2 and 3). Further, our results suggest that in
non-repetitive long-range correlated regions of DNA, electrons can
propagate over average distances of ,300 nucleotides, and that a
fraction can propagate over distances of more than 1,000 nucleo-
tides. In fact, the DNA segment in Fig. 4a, where our model predicts
very good conducting behaviour, is even longer—extending to
,8,000 nucleotides. This conducting behaviour does not imply
that correlated DNA is a macroscopic conductor, but rather that
electronic transport at moderate distances can be found at T ¼ 0.
This distance range (,1 mm) is the focus of the above-mentioned
experiments.

In summary, we find that long-range correlations change the
localization properties of 1D disordered binary solids. We show that
the localization length of the electron wavefunction is greatly
increased by long-range correlations. In addition, for correlations
stronger than a certain threshold, we find in the thermodynamic
limit a broad energy band of extended states, and therefore a
conducting phase. Thus, although still disordered, the 1D system
can behave as a conductor, in contrast to the traditional theory
which is applicable only for uncorrelated disorder. The threshold in
the control parameter (the value of the correlation exponent)
corresponds to a ‘critical point’ at which a metal–insulator tran-
sition takes place. These findings may be of importance for
elucidating the electronic transport and the biological function of
DNA segments with different types of correlations, as well as for the
design of nanoscopic devices. A
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Among the various applications for reversible holographic sto-
rage media1,2, a particularly interesting one is time-gated holo-
graphic imaging (TGHI)3–5. This technique could provide a
noninvasive medical diagnosis tool, related to optical coherence
tomography6,7. In this technique, biological samples are illumi-
nated within their transparency window with near-infrared light,
and information about subsurface features is obtained by a
detection method that distinguishes between reflected photons
originating from a certain depth and those scattered from various
depths. Such an application requires reversible holographic
storage media with very high sensitivity in the near-infrared.
Photorefractive materials, in particular certain amorphous
organic systems, are in principle promising candidate media,
but their sensitivity has so far been too low, mainly owing to their
long response times in the near-infrared. Here we introduce an
organic photorefractive material—a composite based on the
poly(arylene vinylene) copolymer TPD-PPV8—that exhibits
favourable near-infrared characteristics. We show that pre-illu-
mination of this material at a shorter wavelength before holo-
graphic recording improves the response time by a factor of 40.
This process was found to be reversible. We demonstrate multiple
holographic recording with this technique at video rate under
practical conditions.
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A cytosolic catalase is needed to
extend adult lifespan in C. elegans
daf-C and clk-1 mutants

J. Taub, J. F. Lau, C. Ma, J. H. Hahn, R. Hoque, J. Rothblatt & M. Chalfie

Nature 399, 162–166 (1999).
.............................................................................................................................................................................

We no longer have confidence in our observations associating
a reduction in adult lifespan with a putative mutation in the
Caenorhabditis elegans catalase gene ctl-1 and therefore retract this
paper. With the assistance of J. Liang and C. Keller, we have
confirmed that C. elegans has multiple catalase genes (actually
three in tandem) and that the original strain, TU1061, has decreased
transcription of ctl-1 messenger RNA. However, we have also found
several errors, one identifying a single nucleotide deletion as the
defect in the putative ctl-1 mutation and others in the identification
of strains carrying mutations in multiple genes. In particular, we
have not seen the expected reduction in ctl-1 mRNA in other

strains tested. The longevity results obtained with these strains are
therefore meaningless. We are grateful to our colleagues, particu-
larly C. Kenyon and M. Crowder, for conveying to us their concerns
about our results. A..............................................................

retraction

Metal–insulator transition in
chains with correlated disorder

Pedro Carpena, Pedro Bernaola-Galván, Plamen Ch. Ivanov
& H. Eugene Stanley

Nature 418, 955–959 (2002).
.............................................................................................................................................................................

This Letter reported numerical simulations of one-dimensional
disordered binary systems, and found a threshold value for the
exponent characterizing the long-range power-law correlations of
the system. Below this threshold, the system behaves as an insulator
and above it, in the thermodynamic limit, the system behaves as a
conductor. Unfortunately, we have now found that this observation
was a consequence of the algorithm used to generate long-range
correlations in binary chains, because above the threshold value of
the exponent only a finite number of segments of atoms of the same
type (A or B) exists, even in the thermodynamic limit of an infinitely
large system. Thus, the system studied was not truly disordered. As a
result, what we observed at the critical threshold value for the
correlation exponent was not a transition from insulator to metal
behaviour in a disordered system (as reported), but a transition
from a disordered to an ordered system. For this reason, the authors
retract the claim of a metal–insulator transition in the infinite
binary chain with correlated disorder. The results are still valid that
relate to the behaviour of a binary chain below the critical threshold
value of the correlation exponent, and to large but finite system sizes
(as found in the DNA example discussed in the Letter).

We thank L. Hufnagel and T. Geisel for drawing this to our
attention. A
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erratum

Wave-like properties of solar
supergranulation

L. Gizon, T. L. Duvall Jr & J. Schou

Nature 421, 43–44 (2003).
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In Fig. 1, the units of frequency should be microhertz (mHz), not
millihertz (mHz). In the US-printed issues, Fig. 3b appeared
blurred. A
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