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Abstract. We study a correlated-site percolation model on a square lattice in which a site is 
occupied if all four bonds surrounding it are occupied; this model is of possible relevance to 
supercooled H 2 0  and D 2 0 .  Using Monte Carlo methods, we find the critical concentration 
of sites pc = 0.562*0.001, and the critical exponents v = 1.33 i 0 . 0 7  and y = 2.56i0.27.  
These results indicate that this correlated percolation problem is in the same universality 
class as uncorrelated percolation, while the critical threshold is decreased by about 5% 
relative to its value for the corresponding random-site percolation problems. 

1. Introduction 

Recently a correlated-site percolation model has been proposed (Stanley 1979, Stanley 
and Teixeira 1980) that is possibly of relevance in providing some insight into the 
behaviour of supercooled HzO and DzO (Angel1 1980)s. A fraction pB of bonds are 
randomly occupied, and then the sites are partitioned into t + l  separate species 
(‘colours’) according to the number j = 0, I, 2, . . . , z of bonds emanating from each 
site; z is the coordination number. Although the fraction of sitesfi belonging to species 
j is determined solely by the random variable pB, 

the connectivity properties are very different from those of pure percolation. For 
example, if the z nearest neighbours of a given site belong to species z ,  then the site 
itself must be species 2. 

This ‘polychromatic correlated-site percolation problem’ is of theoretical interest in 
its own right, independent of its possible utility in providing a physical mechanism 
germane to supercooled water, because it is a simple example of correlated-site 
percolation. Previous studies of correlated-site percolation have concerned the 
connectivity of spins which are partitioned into two classes-‘up’ or ‘down’-on the 
basis of an Ising or lattice-gas interaction (see e.g. Coniglio et a1 (1979)’ Stoll and Domb 
(1979) and references therein). The present model is far easier to study because it 
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begins wi?h random bond occupancy. One open question is whether or not critical- 
point exponents are the same for this correlated-site percolation problem as for random 
percolation, that is, whether or not the two problems are in the same universality class. 
This is the question addressed here. 

We treat the square lattice ( z  = 4) and consider the somewhat simpler ‘bichromatic’ 
problem in which the z + 1 different site species are divided into two classes. A site is a 
member of the first class (and is indicated by a heavy dot) if all z bonds emanating from 
it are occupied, as shown in figure 1. All other sites belong to the second class; these are 
not marked. Nearest-neighbour four-bonded sites are said to belong to the same 
cluster. It is our object to study the nature of the singularities in the various cluster 
properties as the site density p -f4 = approaches pc, the percolation threshold. TO 
this end, we employ Monte Carlo computer simulation procedures for the square lattice 
with L sites on its edge, where L ranges from 20 to 300. Periodic boundary conditions 
are used, so that the lattice is in reality a torus; we say that a given finite L x L system 
‘spans’ if there is a cluster which surrounds the hole in the torus. The amount of data 
generated for each value of p ranges from 1000 realisations at L = 20 and L = 40, to 120 
realisations at L = 300. 

Figure 1. The determination of the site clusters. A site is occupied if and only if all four 
bonds surrounding it are occupied. Shown is one realisation for L = 20 (the smallest of the 
size sequence studied here), with ps = 0.75; hence p = p i  3 0.32, well below the percola- 
tion threshold. Site clusters in ( a )  are displayed more clearly in ( b )  in which all bonds which 
do not connect nearest-neighbour sites have been removed. Samples of size up to L = 300 
were used in the present Monte Carlo study. 

2. Estimation of pc and the critical exponents v and y 

We define ~ ( p )  as the percentage of realisations which span at a site concentration p. In 
figure 2(a) we plot ~ ( p )  for sizesL = 20,40,50,100,200, and 300. With increasing cell 
size, the function ~ ( p )  approaches a step function, where ~ ( p )  = 0 for p < p c  and 
~ ( p )  = 100 for p >pc.  Defining pZO and p8O as the site concentrations at which 
respectively 20% and 80% of all realisations span, it is quite apparent from figure 2 ( a )  
that pc lies betweer? p20 and p80 for all cell sizes studied. 
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Figure 2. (a )  A plot of ~ ( p ) ,  the percent span, for L = 20,40, 50, 100,200 and 300. With 
increasing cell size, a ( p )  approaches a step function, where a ( p )  = 0 for p C p c  and 
n ( p )  = 100 for p > p c .  ( b )  A plot of Ig L against p z o  and pso .  Because p z o  approaches p ,  from 
below and p s o  approaches p c  from above, p c  lies somewhere in the region between 
p z 0 ( L  = 300) and pso(L = 300); i.e. 0 .555  <p,<0.565. p is the site density. 

In figure 2 ( b )  is plotted lg L against p20 and p80'i'. The values pz0 and p80 for L = 300 
define a narrow range for the value of pc, 0.555 <pc<  0.569. An eyeball extrapolation 
of the two curves provides a rough estimate of pc = 0.562. 

From finite-size scaling theory (Fisher 1971, Sur et al 1976), we expect 

p20(m) -pzo(L) - L'/" pSO(L) -PSO(m) -L'/"' (2) 

where pz0(m) = p80(m) = pc, and v is the connectedness length exponent. In figure 3(a), 
the plot of lg(p20-p:1a1) and l g ( p 8 ~ ~ - p ? " )  against Ig L yields the exponents v' and v 
which refer to the connectedness length singularity above and below pc respectively. 
Choosing pc through a least-squares fit such that Y = v', we find pc = 0.562 * 0.001, and 

P a )  

This procedure has the drawback that v depends on pZa' ,  which must be chosen in 
some fashion. An alternative procedure is to plot lg(psO -p20) against lg L, as in figure 
3(b) .  From the slope of the straight line shown, we obtain the estimate 

Y = v' = 1-33  f 0.11. 

U = 1-33  * 0.07. (3b) 

Both estimates, (3a) and (3b), compare favourably with values reported for random site 
percolation: v = 1 - 3 2 % %  (Cox and Essam 1976), v = 1n(31/2)/ln(3/2) = 1.354 (Klein et 
a1 19781, Y = $  (den Nijs 1979), and 1 = 1.354*0.015 (Reynolds et a1 1978, 1980). 

The critical behaviour of the mean c ister size, S(p), is described by the exponents y 
and y ' ,  

t For a parallel treament of random-site percolation, see Roussenq et a1 (1976). 
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Figure 3. ( a )  A plot of Ig L against Ig 1 p c  - pz0 1 and Ig Ips0 - p c  1 .  Since ( p  - p 2 0 )  - L"" and 
jpS0-pcj-L1'"', the slopes of the two curves are v and v' respectively. Choosing p c  
according to the self-consistent criterion that v = v', we find that p c  = 0.562 and v = v' = 
1.33. ( b )  A plot of Ig L against lg (pso-p20). The straight line has slope = -U = -1.33. 

A least-squares fit of lgS(p) against lglp-p,l, where S ( p )  includes the largest 
cluster only for p < pc, yields slope - y for p < pc and slope - y' for p > pc. Choosingpp'"' 
such that y = y ' ,  we find pc = 0.564 f 0.003 and 

( 5 )  y = y' = 2.56 f 0.27 

for our L = 300 data (figure 4(a)). The data for smaller sizes are consistent with (9, but 
display rounding for p close to pc. The estimate ( 5 )  compares favourably with values 
reported for random site percolation: y = 2.43 f 0.03 (Sykes et a1 1976a) and y = 
2.432 f 0.035 (Reynolds et a1 1978, 1980). 

8 

Figure 4. ( a )  A plot of Ig S ( p )  (arbitrary units) against Ig 1p -pEI for L = 300, where S ( p )  
includes the largest cluster only below pc .  Choosing a trial p c  such that y = y' ,  we find 
pc = 0.564 and y = y' = 2.56. ( b )  A plot of lg P ( p )  against lgip -pci, where P ( p )  is the 
fraction of sites in the largest cluster. By varying p c  to get the best linear fit, we find 
p=0.104 andp,=0.561. 
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The lg-lg plots in figure 4(a)  also give the amplitude ratio C+/C-. We find 

C+/C-=280*4*65. (6) 
This value may be compared with the literature estimates C+/C- = O(1) (Sykes et a1 
1976a, b), C+/C- = 196*40 (Hoshen et a1 1979), and C+/C- = 219*25 (Nakanishi 
and Stanley 1980). 

3. Discussion 

We conclude with some discussion of the value of pc for the correlated-site problem. We 
recall from 02 that eyeball extrapolation of figure 2 ( b )  gives pc = 0.562, and figure 3(a)  
gives pc = 0.562 while figure 4(a)  gives pc = 0.564. However, the data of figure 4(a)  are 
for only one cell size (L  = 300); hence we are inclined to weight this estimate rather less 
than the others. Based on the analysis presented above (and a variety of other 
considerations), we conclude that the best estimate of pc is 

pc = 0.562 * 0.001. (7) 
Thus far we have discussed only two critical exponents, U and y. The values we 

obtained are within the error bars of most literature estimates for random percolation; 
hence we conclude that there is no evidence to suggest that the correlated-site problem 
is in a different universality class than random-site percolation. 

Other percolation functions were also studied, but the accuracy obtained with the 
Monte Carlo information available was not sufficient to provide reliable information. 
For example, P ( p ) ,  the fraction of occupied sites in the largest cluster, varies as 
P ( p )  - Ip -pel ’. Using P ( p )  data for L = 300, we vary pFia’ to get the best linear fit; we 
find pc = 0.561 f 0-003 and p = 0.104 f 0.020 (figure 4(b)). The series estimate is 
p =0.13810.007 (Sykes et a1 1976b) and the large-cell PSRG estimate is p = 
0.138?::::: (Reynolds et a1 1978, 1980). 
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Note added in proof. Very recently, Brodsky (1980a,b) has found that the present model may be suitably 
adapted to explain a wide range of anomalous behaviour occurring in hydrogenated amorphous Si (a - Si : H), 
an amorphous semiconductor characterised by ‘patches’ of pure Si (a- Si), bounded by hydride regions 
(a-SiH,). 
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