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We propose a new class of cluster growth models where growth sites have a 
finite lifetime ~, which contains as special cases the Eden model (r = oo) and the 
kinetic growth walk (~ = 1). For finite but large ~ values the growth process can 
be characterized by a crossover time tx; for times below t x an Eden-type cluster 
is formed, while for times above tx the growth process belongs to the univer- 
sality class of the self-avoiding random walk. The crossover time increases 
monotonically with z. We develop a scaling theory for the time evolution of the 
mean end-to-end distance between the seed and the last-added site, and for the 
average number of growth sites by which the kinetics of the growth process can 
be characterized. We test this scaling theory by extensive Monte Carlo 
simulations. We also extend our results to inhomogeneous media (percolation 
systems). 

KEY WORDS: Cluster growth models; Eden model; kinetic growth walk. 

1. I N T R O D U C T I O N  

I n  r e c e n t  years ,  c o n s i d e r a b l e  a t t e n t i o n  h a s  b e e n  a d d r e s s e d  to  c l u s t e r  

g r o w t h  m o d e l s .  C l u s t e r  g r o w t h  m o d e l s  h a v e  b e e n  u s e d  to  d e s c r i b e  a l a rge  

v a r i e t y  of  s p r e a d i n g  p h e n o m e n a ,  (1 11) r a n g i n g  f r o m  the  g r o w t h  of  t u m o r s ,  

e p i d e m i c s ,  a n d  fo res t  f ires to  s igna l  p r o p a g a t i o n  a n d  n e t w o r k  m e c h a n i c s .  

Also ,  t he  f o r m a t i o n  of  d i f fu s ion  f r o n t s  (12'13) a n d  l i n e a r  a n d  b r a n c h e d  
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polymers (~4) can be conveniently described in terms of cluster growth 
models. Much effort has been undertaken to investigate the basic growth 
rules by which the final structure of a cluster and the growth process itself 
are determined. The final structure can be described by the fractal dimen- 
sion dr, which gives the cluster mass M within a distance r of the seed 

M ~ r d~ (1.1) 

The growth sites are defined as that part of the cluster surface where the 
cluster can grow. The dynamics of the growth process can be characterized 
by the fractal dimension dg, which relates G, the mass of the growth sites 
inside radius r, to r, for r < R, where R is the radius of gyration. Thus 

G ~ r  d~, r < R ]  (1.2) 

It has been shown recently (8~ that the "dynamic" exponent dg and the 
"static" exponent d F are independent of each other. If the next growth site 
to be tested is from a probability distribution P(r) 

P ( r ) ~ r  -~ (1.3) 

where r is the distance from the most recently added cluster site, then for 
/~/> 2 the growth exponent dg changes continuously with/~.(7) 

In this paper we will consider a comparatively simple model where the 
growth sites are chosen from a random homogeneous distribution,/3 = 0, of 
neighbors of already occupied sites. We will consider a novel feature of 
growth sites, namely the possibility of becoming inactive. We identify 
cluster sites as "sick" sites, where epidemics can spread. The assumption of 
a finite lifetime of growth sites is equivalent to the assumption that a "sick" 
site can infect until now "healthy" sites only for a certain time r: i.e., if a 
neighbor of a site A that was infected at time t I has not been infected by A 
up to time ~ + tl, it cannot be infected after that time by A. We find that 
this quite natural assumption does affect strongly not only the dynamic 
universality class, but also the static universality class of the growth 
process. For ~ = oe we recover the well-known Eden model where dj. = 2 
and dg = 1, while for any finite r we find that the growth process belongs to 
the universality class of self-avoiding random walks (to which also the 
growth of branched polymers and the kinetic growth walk belong) d r=  4/3 
and dg = 0. 

In contrast to these earlier studied growth processes, for which the 
probability of growing large clusters is strongly reduced and only non- 
asymptotic values of the fractal dimension are observed, the probability of 
death of a cluster in our new process is extremely low. Large clusters can 
be grown easily and d s = 4/3 is clearly observed. 
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We also modify our model and allow for immune sites where the 
cluster cannot grow. Here we find that d s and dg are not changed for finite 
z values for both p >Pc and p = p<., where p<. is the critical concentration of 
<'sick" sites where indefinite growth still can take place. In contrast, when 
r =  oo one has d f = 2  and dg= 1 f o r p  > pc, while for p =  p<., df = 91/48 and 
dg ~ 3/4. We find that for finite but large r values the growth process can 
be characterized by a crossover time tx. For  t < tx an Eden cluster is for- 
med, while for t > tx the growth process belongs to the universality class of 
self-avoiding random walks. We develop a scaling theory for the basic 
relevant quantities and test it by Monte Carlo simulations. 

2. T H E  M O D E L  

For  specificity, consider a square lattice. To describe the spreading of 
an epidemic, assume that each site of the lattice can either be empty or 
occupied by three types of particles that we shall call sick (S), immune (I), 
and growth (G). At time t = 0 all lattice sites are empty. At time t = 1 we 
place an S particle at the origin and occupy the four nearest neighbor sites 
with G particles. Sites occupied by G particles are called growth sites, since 
they constitute that part  of the lattice to which the epidemic can grow. At 
time t = 2 one of the G particles is chosen randomly and converted into an 
S particle with probability p and into an I particle with probability 1 - p. If 
it is converted into an I particle, we choose randomly one of the remaining 
G particles and continue the process. If an S particle was created again, its 
empty nearest neighbors become G particles and the time is increased by 
one. The <<infection" spreads by the successive conversion of G particles 
into S particles and after t time steps a large cluster of s = t sick particles 
has been formed. This model and modifications of it have been studied in 
Refs. 6 10. It has been found that introducing space correlations (7's) or 
time correlations (1~ between growth sites does not lead to a change in the 
structure of large clusters. At p =  1 (no immune particles) the model 
reduces to the much-studied Eden model. 

Now we introduce a new feature into this model for epidemics: we 
assume that a sick particle remains sick forever, but only can infect its 
neighboring growth particles for a certain time r. If the particle gets sick at 
time tl, then it can infect its neighboring G particles only up to time tl + ~. 
After that time the G particle "dies" and its site becomes empty again. 

(i) For  ~ = oo, the static' properties are in the same universality class 
as percolation, since the process of randomly converting growth particles 
into S particles (with weight p)  or into I particles (with weight 1 - p) is the 
same as for percolation. It is known that di= 2 for p > Pc and d i =  91/48 
for p = Pc- For  details we refer to Ref. 8. 
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(ii) For  z = 1 and p = 1, the cluster grows only on the last-added 
growth sites. This case reduces to the kinetic growth walk, whose proper-  
ties are in the same universality class as the self-avoiding r andom walk (4) 
(used to model  the growth of linear polymers).  Consequently,  we have 
df = 4/3 in this case. 

The kinetic properties of the growth process can be characterized by 
the fractal dimensionality dg, defined in (1.2). 

(i) For  p = 1 and ~ = oo the growth sites represent the surface of a 
compact  cluster and therefore dg = 1. 

(ii) For  p = p~. and z = oo the growth sites more nearly form a fractal 
cut with the external perimeter and therefore d g = d ~ , - 1  =3/4 ,  where 
dh = 7/4 is the fractal dimensionality of the external perimeter (hull) of the 
cluster. 

(iii) On  the other hand, for p =  1 and r =  1 the number  of growth 
sites is constant  (if the growth does not  die) and therefore dg = O. 

The physical question we address here is how both  the structure of the 
final cluster (characterized by dr) and the structure of the growth sites 
(characterized by dg) change when ~ varies from 1 to m and how this 
change depends on the "heterogeneity" of  the medium, characterized by the 
presence of the immune particles. 

3. N U M E R I C A L  S I M U L A T I O N  A N D  SCALING T H E O R Y  

In Figs. l a - l d  are shown typical clusters for p = p~. = 0.5927, ~ = 10; 
P =  Pc, ~ = 80; p = 1, r = 10; p = 1, r =  80, respectively. The clusters for 
P = Pc. and r = 10 look more  like a thick chain, while the clusters with p = 1 
and r = 80 have more  similarity with percolation and Eden clusters. For  
finding the fractal dimensionality dj- we have studied as a function of  time 
t ( = s )  the end-to-end distance [ ( r 2 ( t ) ) ]  1/2 between the last added S site 
and the seed at the origin of the square lattice. ( r 2 ( t ) )  scales as 

( r 2 ( t ) )  ~ t 2/aj (3.1) 

and therefore by measuring ( r 2 ( t ) )  we can determine dr. 

3.1. P = P c  (Cr i t ical  Concentrat ion of Sick Sites) 

Figure 2a shows ( r2 ( t ) ) ,  averaged over 104 runs, as a function of time 
for p = Pc and four values of ~. For  small times corresponding to small 
cluster sizes ( r 2 ( t ) )  is independent of ~ and the slope of the curve of  the 
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(a) (b) 

(c) (d) 

Fig.  1. T y p i c a l  c lus te r s  for  p - 1 ( no  i m m u n e  s i tes)  a n d  p - p~ for  t w o  v a l u e s  o f  l i fe t ime r o f  

g r o w t h  sites. ( a )  P - P c ,  r =  10. T h e  n u m b e r  s o f  c lu s t e r  si tes is s =  1000. (b )  p - p , . ,  ~ = 8 0 ;  

s - 2400. (c)  p = 1, r = 10; s = 2000. (d )  p = 1, r = 80; s = 6000. 

double logarithmic plot equals 1.05, the value for percolation clusters. For 
large times the slope is equal to 1.5, corresponding to d s = 4/3, the value 
for seif-avoiding random walks. The crossover time t x increases with 
increasing value of ~. 

In Fig. 2b we have plotted, for the same set of r values as in Fig. 2a, 
the number of growth sites averaged over l04 runs as a function of time. 
Again, for small times, all curves coincide, and the slope of G(t) in the 
double logarithmic plot is equal to 0.4, corresponding to dg= 0.75, the 
value for percolation. For  large times, G(t) reach a plateau and therefore 
dg = 0, as for self-avoiding random walks. The height of the plateau G oo 
increases with increasing z; we have found numerically that for large r, Go~ 
follows a power law 

G~ ~r~g (3.2) 
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where % is a new exponent, which for p = p,. has the value % ~-0.75. The 
crossover time increases when the lifetime r of the G particles is increased. 
In both @2} and G, a crossover from a percolation growth process to a 
growth walk is observed. Hence the crossover times in the end-to-end dis- 
tance and in the number of growth sites must be identical 

t x ~  r: (3.3) 

where ~b is a new exponent. In the following we will develop a scaling 
theory by which the crossover exponent ~b can be related to %, 
d~=_df(r= oo)=91/48,  and r i g - r i g ( r =  o0)~-3/4. We assume that for 
large r, G and @2} can be written as 

and 

G(t, z) = r~@(t/tx) (3.4) 

(r2(t, r) } = r~'R(t/tx) (3.5) 

For small times t ~ tx the finite lifetime of the G particles cannot affect the 
growth of a percolation cluster. Hence both G and ( r  a} must be indepen- 
dent of r, 

G(t) ~ t '~ /~  (3.6) 

and 

(r2(t)  } ~ t~ ~ 

Comparing (3.4) with (3.6) and (3.5) with (3.7), we find 

& x )  ~ x ~ / ~  ~, x ~ l 

and 

(3.7) 

(3.8) 

Similarly, we obtain for ~r 

and therefore 7r 

~r = ~ . 2 / d f  

and % are related by 

G = 2%/dg  

(3.11) 

(3.12) 

We insert (3.8) into (3.4). Since the result must be independent of v, we find 

r = ~ d ?  /d2 (3.1o) 

R ( x ) ~ x ~ ,  x <  1 (3.9) 
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Equations (3.10) and (3.12) express the exponents ~r and ~b by 2g and the 
known exponents d~ and dg. A simple and more physical interpretation of 
(3.11) is as follows: the factor r~r in (3.5) can be considered the square of an 
effective crossover radius rx. For ( r  2) ~ r 2, a percolation cluster is grown 
and h e n c e  ( r 2 ) ~ t  2/a~f. For t = t x  we have thus r2~t2/d~x ~,  from which 
(3.11) follows. In order to test the scaling theory, we have plotted 
(r2(t, ~) ) / r~  and G(t, r)/r  ~ as a function of t/tx and have varied the 
exponent %. We have achieved a data collapse for 0Cg = 0.75 -}- 0.05 in 
Fig. 3. So far, we have no explanation for this number, which seems to 
suggest ~g = d(g ~) or c9-= 1/d) ~. 

Next we study the growth of clusters in the absence of immune par- 
ticles, p = 1. 

3.2. p = l  (No Immunity) 

Figures 4a and 4b show the square of the end-to-end distance and 
number of growth sites as a function of time for four different ~ values. We 
observe the same qualitative features as for p = Pc. 

Below a crossover time tx, G satisfies the power law (3.6), where now, 
according to the Eden growth process, d~ = 1 and dj~ =2.  Thus, G ~  t lie 
for t,~ tx, which is clearly observed in Fig. 4b. For t > tx we have again 
G(t) ~ Go~ = const, and hence dg= O. We have found that G o still satisfies 
the power law (3.2), but now % is close to unity, possibly supporting the 
conjecture % = dg. 

Above tx, ( r2 ( t ) )  follows the power law (3.1) with d r = 4 / 3  and we 
recover again the characteristic behavior of the self-avoiding random walks 
as seen in Fig. 4a. Below tx, in a large time regime, ( r2 ( t ) )  is linear in t, 
since Eden clusters are grown with d =  2. However, for very small t we see 
some transient behavior, which becomes more pronounced for smaller 
values of ~. This transient behavior is reminiscent of the situation for the 
kinetic growth walk (z = 1). In KGW, the survival probability is extremely 
low at large times and the transient behavior seems to dominate. This 
observation led several authors (see, e.g., Ref. 15 and references therein) to 
the wrong conclusion that the K G W  belong to a different universality class 
than the self-avoiding walk. The same transient behavior occurs in cluster- 
growth models (~s,16) for branched polymers that are chemically linear. (14) In 
contrast to these, where the asymptotic regime was hard to reach 
numerically, in our growth model when the lifetime z of the G particles is 
sufficiently large the survival probability of the growth process is high and 
the asymptotic regime can easily be reached. 

We have found in Fig. 5 that for large ~(r2(t, z ) )  and G(t, ~) also 
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satisfy the scaling relations (3.6)-(3.12), where now d j~=2 ,  dg  = 1, and 
~g ~_ 1. For smaller z values and short times the scaling does not hold (see 
above). 

3.3. P>~Pc (The Critical Regime)  

In Sections 3.1 and 3.2 we studied the growth process at p,. and at 
p = 1. We found that for sufficiently large values of t and z the end-to-end 
distance and the number of G particles obeyed scaling laws that are 
reminiscent of scaling laws close to critical points. The scaling has been 
described by a new exponent % which is about 1 at p = 1 and about 3/4 at 
P = Pc. Now we shall study the growth of clusters just above the critical 
concentration. What  do we expect qualitatively to occur? Let us consider 
first the case of large z values and time t well below the crossover time tx, 
where a percolation cluster is grown. On length scales much smaller than 
the correlation length ~ [P-Pc[-v ,  v= 4 / 3 ,  the growth process is the 
same as at p~.. Therefore we expect that (3.1) and (3.2) hold for t ~  tx and 
( r2( t ) )  ~ 32. By ( r 2 ( t x ) ) ~  42 a second crossover time t} is introduced via 

t ~ d ( ' :e )  ( r2( tx ) )~( t ' xd)2 /~  32 , i.e., tx ~J . Consequently, we have to dis- 
tinguish now three time regimes (see Figs. 6 and 7): 

1. For  t ~ ~ ~ r0 a percolation cluster is grown as at criticality, i.e., 
d~ = 91/48 and dg ~- 0.75. 

2. For ~ t ~ z  ~, a compact cluster is formed with d r = 2  and 
d~ = 1. 

3. For  t,> re the growth process behaves like a self-avoiding random 
walk, with dr--4/3 and dg = O. 

If r is large, but smaller than ~ ,  then the situation is similar to that 
at Pc with only one crossover time t x ~  v ~. When the concentration p of 
S particles is enhanced, ~ decreases and the crossover time t;v tends to zero. 
Then the presence of few immune particles is not relevant for the growth 
process and we expect a situation analogous to p = 1. To test these predic- 
tions, we have studied (r2(t, r ) )  and G(t, z) above Pc for several concen- 
trations p and four v values. Representative examples are shown in Fig. 6, 
where p = 0.6076 is fixed and z is varied, and Figs. 7, where r = 160 is fixed 
and p is varied. The figures show clearly the existence of a second crossover 
time t~v which vanishes as p goes to higher values. 

4. CONCLUSION 

In summary, we have introduced a new class of cluster growth models, 
which are characterized by a finite lifetime ~ of the growth sites. The model 
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contains as special cases the kinetic growth walk (~ = l)  and the Eden 
model (z = oo). We have found that for time t less than a crossover time tx, 
Eden clusters are formed, while for large time t >> tx ,  the growth process 
always belongs to the universality class of self-avoiding random walks, with 
the fractal dimensionality d s = 4/3 and the growth exponent dg = 0 in two 
dimensions. For  large r and in the absence of immune sites, the number  of 
surviving clusters remained practically constant at large times and therefore 
the fractal dimensionality of the growing clusters was easy to detect 
numerically. This behavior is in marked contrast to more conventional ran- 
dom walks, such as the kinetic growth walk ~15'j6/or the growth model for 
branched polymers, (~4l where transient behavior is dominant on a large 
time scale and thus the asymptotic regime (d 7 = 4/3) is very hard to reach 
numerically. 

It will be interesting to study several variants of our model, where (a) 
the lifetime of the growth sites is not a constant, but is chosen from a 
distribution (17) and (b) the growth sites themselves are not chosen ran- 
domly in the next time step, but rather from a distribution that depends on 
the actual distance from growth sites to the last added site (see Ref. 8). 
Also, we are studying the more general case when growth sites have infinite 
lifetime with probability q and finite lifetime with probability 1 - q .  
Preliminary results (17) show that dynamical growth transition occurs at a 
critical value qc- For q < q , . ,  the growth process is characterized by 
dr = 4/3, dx = 0, while for q > G ,  Eden clusters are formed at large times. 
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