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We examine by molecular dynamics simulation the solubility of
small apolar solutes in a solvent whose particles interact via the
Jagla potential, a spherically symmetric ramp potential with two
characteristic lengths: an impenetrable hard core and a penetrable
soft core. The Jagla fluid has been recently shown to possess
water-like structural, dynamic, and thermodynamic anomalies. We
find that the solubility exhibits a minimum with respect to tem-
perature at fixed pressure and thereby show that the Jagla fluid
also displays water-like solvation thermodynamics. We further find
low-temperature swelling of a hard-sphere chain dissolved in the
Jagla fluid and relate this phenomenon to cold unfolding of
globular proteins. Our results are consistent with the possibility
that the presence of two characteristic lengths in the Jagla poten-
tial is a key feature of water-like solvation thermodynamics. The
penetrable core becomes increasingly important at low tempera-
tures, which favors the formation of low-density, open structures
in the Jagla solvent.

aqueous solubility � cold denaturation � hydrophobic hydration �
Jagla model � water anomalies

In addition to its unique properties as a pure liquid (1–4), water
is a remarkable solvent. Of particular interest is its behavior

with respect to apolar solutes, which underlies phenomena as
diverse as the environmental fate of many pollutants, biological
membrane formation, surfactant micellization, and the folding
of globular proteins (5, 6). The thermodynamic signatures
associated with this ‘‘hydrophobic hydration’’ include negative
entropies of transfer of apolar solutes into water at low temper-
atures, which are only partially compensated by favorable trans-
fer enthalpies (7). Both of these quantities exhibit a pronounced
temperature dependence. At sufficiently high temperatures, the
roles of entropy and enthalpy are reversed; unfavorable enthal-
pies of transfer are then only partially compensated by favorable
transfer entropies. The resulting solubilities of small apolar
solutes therefore exhibit a distinctive minimum with respect to
temperature, observed to occur in the 310- to 350-K range.

Because of the important contribution to the driving force for
the folding of globular proteins made by the burial of hydro-
phobic residues (6), the ‘‘liquid hydrocarbon’’ picture of protein
folding provides a useful framework for understanding temper-
ature effects on protein stability. Key to this approach is the
analogy between the transfer of an apolar solute from a pure
apolar phase into water and the exposure of hydrophobic
residues upon protein unfolding. There results a common ther-
modynamic framework for the description of heat and cold
denaturation (8, 9) of proteins, the nonmonotonic temperature
dependence of the solubility of apolar solutes in water, and the
minimum with respect to temperature in the critical micelle
concentration of ionic and nonionic surfactants.

There exists a large and important body of theoretical and
computational work addressing hydrophobic hydration phenom-
ena (e.g., refs. 7 and 10–26), which we do not attempt to

summarize here. Among existing theories of hydrophobic hy-
dration, information theory (IT) (e.g., refs. 13–16) focuses on the
relationship between the probability of cavity formation in
water, resulting from microscopic density fluctuations, and the
hydration free energy corresponding to the transfer of a hard-
sphere solute from an ideal gas to bulk water. Assuming that the
microscopic density fluctuations obey Gaussian statistics (14,
16), one obtains the following estimate for the solute’s chemical
potential:

��s
ex � �2v2/2�2 � ln�2��2� /2, [1]

where � � 1/kBT (kB is Boltzmann’s constant), �s
ex is the

difference between the solute’s chemical potential in water and
in an ideal gas at the same density, � is water’s number density,
v is the cavity volume, and �2 � �n2� � �n�2 is the variance of the
number of water molecules n in a cavity of size v. For macro-
scopic cavity volumes, this variance is directly related to the
isothermal compressibility KT, �2 � �2vkBTKT. Thus, assuming
Gaussian statistics and also that the relationship between �2 and
KT holds for microscopic cavities, IT provides an estimate of the
hydration free energy from knowledge of water’s density and
compressibility. This approach has been used to make accurate
predictions of the hydration free energies of noble gases and
methane as a function of temperature (16).

Traditionally, the modeling of water-like anomalies has placed
the emphasis on the role of orientation-dependent interactions
[hydrogen bonds (e.g., refs. 27 and 28)] and on the resulting
tendency of water molecules to adopt a low-density local struc-
ture in which each molecule is on average surrounded by four
tetrahedrally arranged nearest neighbors. Recently, it was shown
that a family of spherically symmetric potentials consisting of a
hard core and a linear repulsive ramp [Jagla model (29–31)] can
be tuned so as to seamlessly span the range of behavior from hard
spheres to water (32, 33). The Jagla ramp potential contains two
characteristic lengths: the hard-core and soft-core diameters a
and b, respectively (see Methods). Their ratio is a sensitive
control parameter that modulates fluid-phase properties be-
tween the hard-sphere and water-like cases. In particular, it was
found that there exists a narrow range of values for the ratio of
length scales over which the ramp system (32, 33) exhibits a
water-like cascade of structural, transport, and thermodynamic
anomalies (34). The Jagla model resembles other spherically
symmetric potentials that have been used to study water (35, 36).
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It has long been known that some water-like anomalies can
appear in spherically symmetric systems (e.g., refs. 30, 31, and
37–42). However, the recent realization that these anomalies are
sensitively controlled by the existence of two characteristic
lengths raises the question of whether a range of other water-like
behavior can be reproduced by such two-length spherically
symmetric potentials. Given the Jagla fluid’s water-like density
and compressibility (31–33, 43), one would expect, based on IT
predictions, water-like solvation thermodynamics in this f luid.
We note, however, that neither the validity of equating micro-
scopic variance and bulk compressibility nor the statistics of
microscopic particle number fluctuations have been measured in
the Jagla fluid. Furthermore, our study extends also to polymeric
hard-sphere solutes, for which Eq. 1 is not valid because of the
breakdown of the Gaussian model (17).

In this article, we investigate the solvation properties of ramp
solvent molecules whose interaction potential is supplemented
with an attractive tail, with respect to apolar solutes. We find that
the ramp solvent exhibits key signatures of water-like hydropho-
bic hydration, namely solubility minima with respect to temper-
ature for hard-sphere solutes, and low-temperature swelling of a
hard-sphere chain of possible relevance to the phenomenon of
cold denaturation (8, 9, 23, 44). The penetrable core of the Jagla
fluid becomes increasingly important at low temperatures, fa-
voring the formation of open structures. Although the mecha-
nism whereby these open structures are formed is different from
that in water, the ability to expand upon cooling, common to
water and the Jagla fluid, may underlie their similar solvation
thermodynamics.

Solubility of Hard Spheres in the Jagla Solvent
We first study the effect of pressure and temperature on the
solubility of hard-sphere solutes in the Jagla solvent. To do this,
we create a system of N � 1,400 Jagla particles and 2,800 hard
spheres of diameter d0 � a in a box Lx � Ly � Lz with periodic
boundary conditions. We fix Lx � Ly � 15a and vary Lz (Fig. 1),
maintaining constant pressure and temperature using a Be-
rendsen thermostat (45) and barostat. At sufficiently low tem-
peratures T � Tc1, the mixture of Jagla particles and hard spheres
segregates into two phases: Jagla-rich and hard-sphere-rich. For
a periodic rectangular simulation cell, the interface forms nat-
urally parallel to face of smallest area. For each pressure and
temperature, we equilibrate the system for 104 time units and
then measure the mole fraction of hard spheres in a sequence of
narrow slabs perpendicular to the z axis during another 105 time
units. We find that this equilibration time is larger than the
relaxation time of local concentration at all temperatures studied.

In each slab, we count the numbers NJ of Jagla solvent particles
and NS of hard-sphere solute particles. We define a slab as
solvent-rich if NJ 	 N0 and as solvent-lean if NJ � N0, where N0
is a temperature- and pressure-dependent threshold, such that
the slabs form two continuous regions covering the entire system
separated by a few slabs corresponding to the interface (see Fig.
1). For convenience, we refer to the slabs as ‘‘solvent’’ in the
solvent-rich region and ‘‘solute’’ if solvent-lean, reflecting the
fact that, at the conditions investigated here, the coexisting
phases are predominantly solvent (Jagla particles) and solute
(hard spheres), respectively. The Jagla fluid is clearly a liquid in
the solvent-rich phase and vapor-like (i.e., very dilute) in the
solvent-lean phase. To exclude boundary effects from the solvent
phase analysis, we include only those slabs whose distance to the
closest solute slab is 	6a. The analogous criterion is applied to
the solute phase. Finally, we find the mole fraction of hard
spheres in the solvent and solute phases

x �
NS

NS � NJ
[2]

and compute the ratio

k�T, P� �
Pxu�T , P�

xv�T , P�
, [3]

where xu and xv are the equilibrium mole fractions of hard
spheres in the solute (‘‘u’’) and solvent (‘‘v’’) phases, respectively.
At low enough pressures, k(T, P) becomes Henry’s constant,
kH(T), which is the ratio of the solute’s liquid-phase fugacity to
its liquid-phase mole fraction (46). Under vapor–liquid equilib-
rium conditions, the solute’s fugacity is equal in the vapor and
liquid phases. At low enough pressure, the vapor phase behaves
like an ideal gas mixture, and the solute’s vapor-phase fugacity
equals its partial pressure, hence kH(T) 
 Pxu/xv. Thus, knowl-
edge of kH(T) and measurements of vapor-phase composition
allow for the calculation of equilibrium solubilities (46).

Fig. 2 a and b, respectively, shows the calculated solubility xv

as a function of T for P � 0.1, 0.2, and 0.3, and k�1(T, P) for P �
0, 0.1, 0.2, and 0.3. The behavior of the solubility follows that of
k�1(T, P), since for T �� Tc1, the solvent’s vapor-phase mole
fraction is very low, and therefore Pxu 
 P. Hence, xv 
 P/k(T,

Fig. 1. Explanation of the calculation of the solubility from simulations.
(Top) One typical microscopic configuration of a cross-section of the three-
dimensional simulation box of dimensions Lx � Ly � Lz with periodic boundary
conditions with Lx � Ly � 15a and Lz � 78a. The box contains 1,400 Jagla
particles and 2,800 hard spheres. Red spheres represent the hard cores of the
solvent particles interacting via the two-scale spherically symmetric Jagla
potential, and the green spheres represent hard-sphere solutes. The system is
kept at P � 0.3 (	 Pc2 � 0.24) and T � 0.9 (	 Tc2). (Middle) For the configuration
in Top, the instantaneous number of Jagla solvent particles NJ and hard-
sphere particles NS in the slabs of width Lz/100 perpendicular to the z axis. The
dashed horizontal line denotes the threshold N0 � 20 selected to distinguish
between the solvent-rich and solvent-lean phases. (Bottom) NJ and NS aver-
aged over 104 configurations taken over total time of 105 time units. The black
solid line shows the derivative �dNJ/dz�, which has a maximum at the boundary
between the two phases, denoted here by the gray shaded region, which is
excluded from our analysis. Note that NJ and NS in the solvent-rich and
solvent-lean regions are almost constant, as can be seen from the small value
of the derivative.
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P), and thus the solubility minimum as a function of temperature
approximately coincides with the maximum of k(T, P). The
striking feature is that, as for apolar solutes in water (47–51), the
solubility has a minimum as a function of temperature, here at
TmS � 0.85 � 0.10, and increases upon cooling below TmS. Note
that the temperature of minimum solubility is considerably
higher than the temperature of maximum density, TMD; for the
Jagla liquid, TMD 
 0.5 at P � 0.1 (29, 43, 52). In contrast, the
solubility minimum of hard spheres in water occurs close to
the TMD (53). Solvation thermodynamics consistent with solubility
minima for apolar solutes, as shown in Fig. 2, have also been found
in other spherically symmetric water models (36) but only upon
using water’s experimental �(T) relationship. In the present work,
the water-like anomalies are inherent in the Jagla model.

Henry’s constant can be written as (54)

kH�T� �
kBT
v�

exp� � s
ex

kBT� , [4]

where v� is the solvent-phase molecular volume, and �s
ex is the

difference between the solute’s chemical potential in the solvent
phase, and in an ideal gas mixture at the same temperature, mole
fraction and total density. At sufficiently low pressure, Eq. 4 can
be written as

kH�T� � P exp� �g � T�s id

kBT � , [5]

where �g is the difference, per solute molecule, between the
Gibbs energies of the liquid mixture consisting of 1 mole of
solute and (1/x � 1) moles of solvent, and the sum of the

corresponding pure component liquid-phase Gibbs energies for
1 mole of solute and (1/x � 1) moles of solvent, at the given
temperature and pressure. Here, x is the solute mole fraction,
and �sid � �kB[ln x  (1/x � 1)ln(1/x � 1)] is the ideal entropy
of mixing.

Fig. 2b also shows, as a line, a calculation of 1/k(T, P) using Eq.
5. In summary, the energetic and volumetric contributions to �g
were obtained directly from simulations of the mixture and of the
respective hard-sphere and Jagla pure liquids. Thermodynamic
integration was used to calculate �S. The calculation was
performed at a fixed solvent-phase mole fraction, as indicated in
the figure. It can be seen that the calculated values of kH(T) are
in good agreement with k(T, P) � Pxu/xv obtained directly from
the phase equilibrium simulations at the same pressure and
temperature.

Hard-Sphere Polymer in Jagla Solvent
We next relate the observed solubility minimum of small non-
polar spheres in the Jagla solvent to the degree of extension or
collapse of a nonpolar polymer under similar solvent conditions
and, correspondingly, to protein pressure- and cold-induced
denaturation. If the nonpolar polymer exhibits water-like solu-
tion behavior in the ramp solvent, one expects to see a closed
loop boundary in the (T, P) plane that encloses the regime of the
most compact polymer configurations. The appearance of such
a region is also correlated with the appearance of a closed loop
region of two phase formation in polymer solutions, with cor-
responding lower and upper critical solution temperatures.

First, we study the behavior of a relatively short polymer
composed of M � 44 monomers modeled by hard spheres of the
same diameter as the solute considered above—namely, d0 � a.
We model covalent bonds by linking the hard spheres with the
simplest bond potential,

Ubond�r� � � � r 	 d1

0 d1 	 r 	 d2

� r 
 d2

, [6]

so that the minimum extent of a bond is d1 � a and the maximum
extent is d2 � 1.2a. We simulate for 105 time units the trajectory
of the polymer at constant T and P in a cubic box containing N �
1,728 Jagla solvent particles with periodic boundary conditions.
We focus on the average polymer radius of gyration Rg(T, P),
which is indicative of compact vs. extended configurations.

The behavior of Rg(T, P) has been mapped out and is shown
as a function of temperature for six values of pressure in
supporting information (SI) Fig. 6. The data are summarized in
the diagram in Fig. 3a. For small pressures, Rg(T, P) reaches a
very distinct minimum at a temperature denoted as TmR(P),
analogous to hydrophobic polymer collapse in water. TmR(P) is
found to be greater than the temperature for the minimum
monomer solubility, TmR 	 TmS(P). As pressure increases, the
minimum becomes less pronounced and TmR(P) shifts to higher
temperatures and eventually, at P � 0.4, almost disappears. This
pressure-induced swelling behavior is also analogous to that
observed in water. From standard polymer theory (55–57), one
can also delineate thermodynamic regions where the Jagla
solvent is a good solvent, promoting swelling, or a bad solvent,
promoting collapse. This theory replaces the complex interac-
tions of the monomers with the surrounding solvent by the
effective pairwise interaction potential between monomers and
thus does not take into account many aspects of the polymer–
solvent interactions such as the possible formation of a vapor-
like solvent interface (10) around the completely collapsed
globule predicted by a recent theory of hydrophobic hydra-
tion (17).

Examination of the region of the P–T plane bounding col-
lapsed configurations shows this to have the anticipated closed
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Fig. 2. Simulation results for solubility. (a) The solubility of the hard-sphere
solutes in the Jagla solvent as function of temperature (subscript ‘‘v’’ denotes
the solvent-rich phase). (b) Symbols indicate our simulation results for
1/k(T, P) � xv/(Pxu) (see Eq. 3) at four different pressures (subscript ‘‘u’’ denotes
the solute-rich phase). 1/k(T, P), in the limit P3 0 coincides with the inverse of
Henry’s constant 1/kH(T). The solid line indicates our theoretical prediction
based on calculations of thermodynamic mixing quantities (see Eq. 5). Note
that x denotes the mole fraction of the solute in the uniform system, whereas
xv denotes the mole fraction of the solute in the solvent-rich phase in equi-
librium with the solvent-lean phase. The solubility minimum in a approxi-
mately coincides with the minimum of the inverse Henry’s constant in b.
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loop structure. This region lies generally below Pc2 and above the
locus of TMD in the P–T plane. On the high-temperature side, the
region where Rg(T, P) � 3.5 is bounded by the liquid–gas critical
point. It is noteworthy that the shape of the region of more
compact polymer configurations, indicated in Fig. 3b, resembles
the typical shape of the regions in the P–T plane in which
proteins can fold into their native compact states, although, in
the data of Fig. 4a, the transition is gradual (see below).

Interestingly, although the region where the Jagla fluid is a
poor solvent for the polymer, corresponding to normal water-
like behavior, lies below the critical pressure of the liquid–liquid
critical point Pc2, a secondary and distinct solvent behavior is
found above Pc2. Although above Tc2, the solvent quality is good
and slowly varying over a wide range of temperatures, solvent
quality dramatically decreases as we approach Tc2 and presum-
ably cross the Widom line (43, 52, 58). This suggests that the
high-density liquid (HDL) in the Jagla model is a poor solvent
for the polymer, whereas the low-density, ambient water-like
liquid (LDL) is a good solvent for the polymer. This behavior is
in accord with expectations based on the anticipated increase in
the work of cavity formation in the HDL compared with LDL.
The same effect is observed in simulations of water (25).

For protein folding, the transition between compact and
extended states is a sharp one. Furthermore, theoretical con-
siderations (10, 17) predict that the interface between water and
a large enough apolar solute resembles that between a liquid and
its vapor (henceforth referred to as dewetting of the solute). To
test the applicability of these aspects of theory to the Jagla
solvent, we simulate polymers of increasing numbers of hard-
sphere monomers (M � 11, 22, 44, 88, and 176) in the Jagla
solvent of N � 4,200 particles at P � 0.1. One can see (Fig. 4)
that whereas for M � 88 the dependence of Rg on T is gradual,
as expected from the standard polymer theory (55–57), for M �
176 it is almost discontinuous, with a sharp jump from a
completely collapsed state with Rg � 4.0a at T � 0.6 to a
completely swollen state with Rg � 11.0a at T � 0.3, which is
equal to the value of Rg in vacuum.

The solvation of these polymer systems is of interest. However,
we note here that the pressure P � 0.1 is above the Jagla fluid’s
gas–liquid critical pressure, and hence the gaseous phase cannot
exist at this pressure for the neat solvent. Hence, the important
issue of a true dewetting transition at the polymer–solvent
interface (10, 17) cannot be addressed for the thermodynamic
states investigated in this work. Preliminary results do indicate
the observation of solvent depletion at the polymer globule
interface for lower pressures. For completeness, the polymer
solvation profiles for several representative cases studied here
are reported as SI Fig. 7.

Discussion and Conclusions
We have studied the dissolution of a simple hard-sphere solute,
and corresponding polymer, in a two-scale spherically symmetric
Jagla solvent previously shown to have water-like liquid prop-
erties (29, 31–33, 52). We have found that the system exhibits a
temperature of minimum solubility, resembling experimental
results in water. In addition, the study of the hard-sphere
polymer reveals that the shape of the (T, P) region supporting
compact configurations in the Jagla solvent mimics the conven-
tional closed loop region of stable folded protein conformations
in water. For large enough polymers, we find a sharp transition
between compact and completely collapsed configurations.

Our work is consistent with the possibility of a common
physical mechanism in water and the water-like Jagla solvent for
the increase of solubility of nonpolar solutes upon cooling (Fig.
2) and, correspondingly, the cold-induced swelling of a polymer.
These are engendered by the existence of two repulsive lengths
in the model potential, the hard core corresponding to the
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system exhibits a sharp transition at T 
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consistent with dissolution in a ‘‘good’’ solvent.
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position of the nearest-neighbor shell of solvent molecules and
the soft repulsive core. The latter provides a preference—
increasingly significant at low temperature—for a low-density
open structure in the solvent. This larger preferred distance,
denoted ‘‘b’’ in Fig. 5a, corresponds to the distance preferred by
second-neighbor molecules in water, although the forces creating
that preference in water have a quite different origin. It is appar-
ently the particular combination of relative distances that, when
balanced, leads to remarkably rich water-like behavior in both
cases. It is worth noting that the temperature range in which cold
denaturation and the solubility minimum occur does not directly
coincide with the extrema of other anomalies, such as the temper-
ature of maximum density, which occur at lower temperatures.

The solvation behavior reported in this work is not accompa-
nied by water-like microscopic structure in the Jagla fluid. At
P � 0.1 and T � 0.5 and 0.95 (see Fig. 2), there is no first peak
in the pair correlation function at r � a (hard core; see Fig. 5).
This feature appears only at higher densities. Hence, there is no
first coordination shell with approximately four neighbors, as in
water. Another important difference with respect to water is the
fact that for P � Pc2, the stable crystal phase of the Jagla
potential is a hexagonal close-packed (hcp) lattice (43), which
lacks local tetrahedral order. Finally, the liquid–liquid critical
point in the Jagla model occurs in the region of the phase
diagram where the fluid is stable with respect to crystallization
(43), whereas water’s second critical point, if it exists, occurs in
the region where the liquid is metastable with respect to the
crystal (3, 4).

This study suggests several directions for future research.
These include the study of solvation thermodynamics of apolar
solutes of different sizes in the Jagla solvent, investigation of the
solution structure around monomeric and polymeric solutes over
broad ranges of temperature and pressure, and a detailed
analysis of the energetic and entropic contributions to the
solvation free energy of apolar solutes in the Jagla solvent.

Methods
The interaction potential U(r) of the Jagla solvent particles with attractive tail
is characterized by five parameters: the hard-core diameter a, the soft-core
diameter b, the range of attractive interactions c, the depth of the attractive
ramp UA, and the height of repulsive ramp UR (Fig. 5) (29). These parameters
can be collapsed into three independent dimensionless ratios: b/a, c/a, and
UR/UA. The ratio of the soft-core and hard-core diameters, b/a, is a sensitive
control parameter that, for the purely repulsive case (UA � 0), determines the
fluid’s hard-sphere (b/a � 1) or water-like (b/a � 7/4) behavior (33). The latter
value of b/a corresponds closely to the ratio of radial distances from a central
water molecule to its second- and first-neighbor shells, as measured by the
second-nearest and nearest-neighbor peaks of the oxygen–oxygen radial
distribution function (
4.5 and 
2.8 Å, respectively). Following refs. 29, 43,
and 52, we select b/a � 1.72, c/a � 3, and UR/UA � 3.5. This choice of parameters
produces a phase diagram with several water-like features. It includes two
critical points, one corresponding to the first-order liquid–gas transition and
the other to a first-order liquid–liquid transition at low temperatures, and a
wide region of density anomaly bounded by the locus of temperatures of
maximum density (Fig. 5b). The role of the attractive potential, b � r � c, is
simply to allow fluid–fluid transitions to occur. Water-like thermodynamic,
dynamic, and structural anomalies occur even in the purely repulsive case (UA

� 0), and their appearance is governed by the ratio b/a (32).
The Widom insertion method (58, 61) is the technique of choice to study

solvation thermodynamics in the limit of infinite dilution. At nonzero solute
concentrations, hence conditions allowing for solute–solute interactions, the
standard method for phase equilibrium calculations is the Gibbs ensemble
Monte Carlo technique (61, 62). In this article, we adapt to the calculation of
phase equilibria a methodology developed in our previous work, the discrete
molecular dynamics (DMD) method (42, 45, 63, 64), which has the potential

advantage that one does not assume infinite dilution. To use the DMD
algorithm, we replace the repulsive and attractive ramps with discrete steps
(40 and 8, respectively), as described in ref. 43.

We measure length in units of a, time in units of a(m/UA)1/2 (where m is the
particle mass), number density in units of a�3, pressure in units of UAa�3, and
temperature in units of UA/kB. This realization of the Jagla model displays a
liquid–gas critical point at Tc1 � 1.446, Pc1 � 0.0417, and �c1 � 0.102, and a
liquid–liquid critical point at Tc2 � 0.375, Pc2 � 0.243, and �c2 � 0.370 (43). We
model solute particles as hard spheres of diameter d0. The hard-sphere solutes
interact with the Jagla solvent only through excluded volume repulsion, which
occurs at the contact distance of (a  d0)/2. Here, we choose d0 � a as the
hard-core diameter of the Jagla solvent. The dependence of the solubility on
d0 is an important question.
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