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We consider a Lévy flyer of order a that starts from a point x0 on an interval @O ,L# with absorbing
boundaries. We find a closed-form expression for the average number of flights the flyer takes and the total
length of the flights it travels before it is absorbed. These two quantities are equivalent to the mean first passage
times for Lévy flights and Lévy walks, respectively. Using fractional differential equations with a Riesz kernel,
we find exact analytical expressions for both quantities in the continuous limit. We show that numerical
solutions for the discrete Lévy processes converge to the continuous approximations in all cases except the
case of a→2, and the cases of x0→0 and x0→L . For a.2, when the second moment of the flight length
distribution exists, our result is replaced by known results of classical diffusion. We show that if x0 is placed
in the vicinity of absorbing boundaries, the average total length has a minimum at a51, corresponding to the
Cauchy distribution. We discuss the relevance of this result to the problem of foraging, which has received
recent attention in the statistical physics literature.
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I. INTRODUCTION

In the past two decades, Lévy flights and Lévy walks ~see
Refs. @1–10#! found numerous applications in natural sci-
ences. Realizations of Lévy flights in physical phenomena
are very diverse, including fluid dynamics, dynamical sys-
tems, and statistical mechanics.

In general, Lévy flights and Lévy walks model anomalous
diffusion, which is governed by rare but extremely large
jumps of diffusing particles. Both Lévy walks and Lévy
flights are characterized by broad distributions of their step
lengths, for which the second moment does not exist. Lévy
walks and Lévy flights of order a,2 have distributions of
step lengths with diverging moments of order m>a and con-
verging moments of order m,a . Hence, the classical central
limit theorem, which governs the behavior of the Brownian
motion, is not applicable. According to the generalized cen-
tral limit theorem @4,11#, the probability density C(x ,n) of
the displacement x of Lévy flights converges after many
steps to the Lévy stable distribution of order a

C~x ,n !5

1

p
E

0

`

exp~2nl0
aqa!cos~qx !dq , ~1!

where l0 is the characteristic width of the distribution of a
single step and n is the number of steps. This distribution is
a generalization of the Gaussian distribution, and is charac-
terized for asymptotically large displacements by the power-
law decay of its density with the exponent

m5a11. ~2!

There are several definitions of Lévy walks and Lévy flights,
which differ in terms of their spatial-temporal correlations
~see, e.g., Ref. @10#!. Here we will restrict ourselves to the
definition @7#. Accordingly, we assume that for Lévy flights
the duration of each step is constant, so that velocity is pro-
portional to the step length. Hence, the time of travel is pro-
portional to the number of steps. Consequently, for Lévy
flights, the mean-square displacement does not exist as a
function of time. This property impedes direct applications
of Lévy flights to physical phenomena.

In Lévy walks, walkers travel with constant velocity,
which is independent of the step length. Hence, the time of
travel is proportional to the total path length. Consequently,
the mean-square displacement exists as a function of time,
but grows faster than linearly. This property makes Lévy
walks applicable for modeling superdiffusion. However, the
time evolution of Lévy flights is simpler than that of Lévy
walks. Hence, in the following we will derive our results for
Lévy flights, keeping in mind that the total path length of the
Lévy flights corresponds to total time of travel in Lévy
walks. In the continuous limit, the Lévy flight process is
described by the superdiffusion equation, which includes in-
teger first order derivative with respect to time and fractional
Riesz operator with respect to spatial coordinates @3,4,12–
16#. Here we will restrict our study to only this class of
equations.

Note that usually anomalous diffusion is modeled by the
equations of the Schneider–Wyss type @17#, which include
fractional derivatives with respect to time and usual Laplace
or Fokker–Planck operators with respect to spatial coordi-
nates @3,4,18–24#. In this case, the presence of absorbing*E-mail address: sergey@miranda.bu.edu
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boundaries can be treated in the same way as in normal dif-
fusion, since after the separation of variables, the solution
can be expressed as a series of the usual eigenfunctions of
the boundary problem for the Laplace or Fokker–Planck op-
erator @16,21–23#.

In the absence of boundaries, the generalized central limit
theorem allows us to treat Lévy flight diffusion with the help
of fractional differential equations @3,4,6,9,12–15#. In the
presence of boundaries, the validity of fractional derivative
formalism is less clear. Note that the problem of the discrete
Lévy flights is finite, since it involves the characteristic
width l0 of the distribution of discrete steps. Thus the prob-
lem of Lévy flights in the finite domain of linear size L must
depend on the ratio M[L/l0. The transition from discrete
Lévy flights to the fractional differential equation involves
transition l0→0. Consequently, the total number of flights
and total path length diverge as powers of M. Since the same
is true for the total path length of the Brownian walker, this
problem can be solved by introducing the fractional diffusion
coefficient, the same way it is done in the usual diffusion
equation. We will address this point in Sec. IV.

Lévy flights in a slab geometry with absorbing boundaries
have been used to model the transmission of light through
cloudy atmosphere @25#. Using heuristic arguments con-
firmed by numerical simulations, Ref. @25# found the scaling
behavior of the transmission probability of a photon through
a slab of width L and the total geometrical path length of
transmitted and reflected light. This behavior was experimen-
tally observed in Ref. @26#. We analytically derive an exact
expression for the transmission probability in Sec. IV.

Very recently @16#, the approximate expressions for the
mean first passage time for both Schneider–Wyss subdiffu-
sion equation @17# and superdiffusion equation @13# have
been obtained by separation of variables. The latter case cor-
responds exactly to the Lévy flight problem, which we treat
here ~see Sec. IV!. The problem of Lévy walks on a finite
interval with absorbing boundaries has already been ad-
dressed in Ref. @27#. In that paper, the authors used an inte-
gral equation approach and performed the Laplace transform
in the temporal domain. They found the asymptotic behavior
of the survival probability, which is related to the asymptotic
behavior of the first passage time. An alternative approach to
the Lévy walk problem which employs the fractional Kram-
ers equations can be found in Ref. @18#. However, as far as
we know, exact expressions for the mean first passage time
for Lévy flights and Lévy walks have not been derived.

The structure of the paper is the following. In Secs. II and
III, we find the mean time of travel before absorption for
both discrete Lévy flights and Lévy walks as solutions of
Fredholm integral equations of the second kind @28# with a
power-law kernel truncated by a cutoff at small distance l0.

In Sec. IV, we treat these equations in the limit l0→0 and
reduce our problem to the solution of fractional differential
equations with Riesz kernels @3,12,24,29#. These equations
were previously applied in the plane contact problem @30# of
linear creep theory and were solved using spectral relation-
ships with Jacoby polynomials @24,31# and by the Sonin in-
version formula @31,32#. We also show how our method is

related to the method of separation of variables first applied
to the partial fractional differential equation of superdiffusion
in Ref. @16#.

In Sec. V, we compare our analytical solutions obtained in
the continuous limit l0→0 with the numerical solutions of
the Fredholm equations obtained for discrete Lévy flights.
We show that fractional differential equations can serve as
good approximations for Lévy flights with absorbing bound-
aries for a,2. We also show that these approximations
break down when a→2 and in the vicinity of the absorbing
boundaries.

Finally, in Sec. VI, we discuss the relevance of our results
to the problem of biological foraging. Recently, Lévy flights
have been used to model animal foraging @7,33–37# and cell
diffusion @38#. It has been suggested @36# that Lévy flights
with a51 provide the optimal strategy of foraging in case of
sparse food sites, if any food site can be revisited. This sug-
gestion was based on the optimization of foraging efficiency,
defined to be the inverse of the average total path length of
the flyer before the flyer is absorbed by traps randomly dis-
tributed with certain density in d-dimensional space. The av-
erage total path length has been approximated @36# as a prod-
uct of the average length of a single flight and the average
number of flights before the flyer is absorbed by traps. It has
been shown @36# that this product has a maximum at a51, if
the starting point of the flyer x0 is selected in the vicinity of
the absorbing boundary. Here we confirm this result in the
one-dimensional case using both an analytical expression for
the average total length of flights obtained in the continuous
limit and the numerical solution for the discrete Lévy pro-
cess. We show that for the case of x0 in the vicinity of the
absorbing boundary, discrete and continuous solutions have
the same power law asymptotic behavior, but their ampli-
tudes are different. As a consequence, the continuous limit
approximation has an additional minimum at a→2, which is
absent in the discrete case. This finding indicates that the
fractional differential equation approach to Lévy flights
breaks down in the vicinity of the absorbing boundary.

In Appendix A, we derive the fractional differential opera-
tor for the Lévy flight problem with absorbing boundaries. In
Appendix B, we derive exact analytical expressions for the
number of flights and the total length traveled before absorp-
tion, using the Sonin inversion formula for the Riesz frac-
tional equation.

II. MEAN NUMBER OF FLIGHTS

Consider a Lévy flight that starts at point x0 of the interval
@0,L# with absorbing boundaries. The flyer makes indepen-
dent subsequent flights of variable random lengths l with
equal probability in both directions. The length of each flight
is taken from the power law distribution

P~ ulu.r !5~ l0 /r !a, ~3!

where the exponent a can vary between 0 and 2, and l0 is the
minimal flight length, which serves as lower cutoff of the
distribution. The probability density of the flight length is
given by
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p~ l !5

al0
a

2

u~ ulu2l0!

ulua11
, ~4!

where al0
a/2 is a normalization constant and u(x)51 for x

.0 or 0 otherwise. The exponent m of Refs. @35,36# is iden-
tical to a11. When a.2, the second moment of the flight
distribution converges and the process becomes equivalent to
normal diffusion. As soon as the flyer lands outside the in-
terval @0,L# , the process is terminated. Instead of the prob-
ability density Eq. ~4!, one could use any power-law decay-
ing density @4,27# regularized at small distances l0, including
Lévy stable distribution Eq. ~1! with n
5p/@2G(a)sin(pa/2)# , where G(a)[*0

`ta21e2tdt is Euler
G function @39#. This value of n is selected so that the
asymptotic behavior of Eq. ~1! coincides with Eq. ~4! @4#. We
use a truncated power-law density for the simplicity of ana-
lytical treatment.

We are interested in two quantities: the average number of
flights before absorption ^n& and the average total distance
^S& traveled before absorption. Note that we consider the
length of the last flight to be equal to the distance from the
previous landing point to the boundary of the interval which
flyer crosses during its last flight. This condition makes our
problem equivalent to the problem of Lévy walks @27# with
the time defined to be equal to the sum of the flight lengths.

Suppose that the probability density of finding a Lévy
flyer at point x after n flights is Pn(x). Then the probability
density after n11 flights is given by the convolution of the
probability density Pn(x) and the probability density of the
next flight p(x) given by Eq. ~4!

Pn11~y !5E
0

L

p~y2x !Pn~x !dx . ~5!

Let La(l0) be an integral operator with kernel p(x2y)
which is defined on a function f (x) of an interval @O ,L# as

@La f #~y ![al0
a/2E

0

L f ~x !u~ uy2xu2l0!dx

uy2xua11
. ~6!

One can see, that La is a self-conjugate operator with
respect to a scalar product ( f ,g)5*0

L f (x)g(x)dx . It can be
shown that for any continuous function f, *0

LuLa f udx
<@12(2/M )a#*0

Lu f udx , where M5L/l0. The value @1
2(2/M )a# can be regarded as the norm of the operator La .
It has a physical meaning of the survival probability, i.e., the
probability for the flight that starts at the center of the inter-
val to stay unabsorbed, which is less than one.

The distribution after n flights is given by

Pn~x !5@L a
n P0#~x !. ~7!

The initial probability density of the flyer located at position
x0 is the Dirac delta function, P0(x)5d(x2x0). The prob-
ability that the flyer remains unabsorbed after n flights

E
0

L

@L a
n P0#~x !dx,@12~2/M !a#n ~8!

decays exponentially with n. The probability that the flyer is
absorbed exactly on the nth flight is

P̃n5E
0

L

@~L a
n21

2L a
n !P0#~x !dx ~9!

and, thus, the average number of flights spent by the flyer on
the interval is

^n&5 (
n51

`

P̃nn5E
0

L

(
n50

`

@L a
n P0#~x !dx

52E
0

L

@~La2I !21P0#~x !dx .

~10!

The infinite sum in Eq. ~10! converges, since the norm of La

is less than one. Here (La2I )21 is the inverse operator with
respect to the operator La2I, and I is the unity operator.
Since the operator (La2I )21 is also a self-conjugate opera-
tor, and P0(x)5d(x2x0), we have

^n&5@~La2I !21h#~x0!, ~11!

where h(x)521 is the constant function. This equation can
be rewritten as a Fredholm integral equation of the second
kind @28# with the kernel p(x02x1)

^n~x0!&511E
0

L

^n~x1!&p~x02x1!dx1 . ~12!

Equation ~12! can be interpreted as a recursive method to
determine ^n(x0)&. Indeed, the average total number of
flights for the process that starts at x0 is equal to one ~con-
tribution from the very first flight, which always takes place!
plus the convolution of the average total number of flights
for the processes that start from all possible landing points x1
of the first flight inside the interval and the probability den-
sity p(x02x1) to land at these points after the first flight.

In general, consider a quantity Q(x0)5^( i51
` q i&, where

q i5q(x i21 ,x i) is a function of the starting point x i21 and
ending point x i of the ith flight, and ^ & denotes the average
overall possible processes starting at point x0. Then, in anal-
ogy with the average number of flights, such a quantity must
satisfy a recursion relation

Q~x0!5^q0~x0!&1E
0

L

Q~x1!p~x02x1!dx1 , ~13!

where ^q0(x0)&[*
2`
` p(x12x0)q(x0 ,x1)dx1. Note that if x1

is outside the interval @0,L# , the particle is absorbed by one
of the boundaries and the value q(x0 ,x1) should be defined
according to its physical meaning for the absorbed particle.
Equation ~13! is identical to Eq. ~11! with h(x)52^q0(x)&.

As an example of the application of Eq. ~13!, let us con-
sider quantity Q(x0) to be the total flux through the right
boundary. This flux is related to the transmission probability
of photons through the clouds @25#. By definition, the flux
through the right boundary is equal to the probability Pr(x0)
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of the absorption of the flyer that starts at point x0 by the
absorbing boundary x5L . In this case, quantity q must be
defined as q(x0 ,x1)5u(x12L). The very first flight is ab-
sorbed by the right boundary with probability pr(x0)
[^q0(x0)&5*L

`p(x12x0)dx1, or after integration

pr~x0!5H @ l0 /~L2x0!#a/2,

1/2,

0<x0,L2l0

L2l0<x0<L
. ~14!

Therefore, Pr(x0) satisfies Eq. ~13! with ^q0(x0)&5pr(x0)
and Eq. ~11! with h(x0)52pr(x0). In the next section, we
will apply this method to define the total path length of the
flyer.

III. AVERAGE TOTAL PATH LENGTH TRAVELED
BY THE FLYER

The average total path length traveled by a Lévy flyer
before absorption is equivalent to the total time spent by a
Lévy walker before absorption @27#. The evolution of the
probability density of Lévy walks was studied @27# in terms
of time. This approach leads to integral equations involving
integration over time and space. Here we restrict our study to
the problem of the average total path length before absorp-
tion of discrete Lévy flights. This particular problem can be
solved in much simpler terms.

In the absence of the absorbing boundaries, the average
flight length with probability density p(l) of Eq. ~4! is given
by ^ulu&5*

2`
1`ulup(l)dl , which is independent of the starting

point and diverges for a<1. In the presence of the absorbing
boundaries, the flight starting from a point y cannot exceed
the distances y and L2y from this point to the boundaries.
One can show that the average length of a flight that starts
from a point y of an interval @ l0 ,L2l0# is given by

s~y ![^ul~y !u&5

al0
a

2 F E
0

y2l0 dx

~y2x !a
1E

y1l0

L dx

~x2y !a

1yE
2`

0 dx

~y2x !a11
1~L2y !E

L

` dx

~x2y !a11G , ~15!

which converges for a.0. If aÞ1, Eq. ~15! reduces to

s~y !5

l0

2~12a !
F S l0

y D a21

1S l0

L2y D a21

22aG . ~16!

In case a51, we have from Eq. ~15!

s~y !5

l0

2 F lnS y

l0
D1lnS L2y

l0
D12G . ~17!

If 0<y,l0, Eq. ~16! must be replaced by

s~y !5

y

2
1

l0

2~12a !
F S l0

L2y D a21

2aG ~18!

or by

s~y !5

L2y

2
1

l0

2~12a !
F S l0

y D a21

2aG ~19!

if L2l0,y<L . Analogous changes must be made in Eq.
~17!.

Thus, according to Eq. ~13!, the total average path length
for the process that starts at point x0 is

^S~x0!&5s~x0!1E
0

L

^S~x1!&p~x02x1!dx1 ~20!

or

^S~x0!&52@~La2I !21s#~x0!. ~21!

This equation is identical to the Eq. ~11! in which function
h(x)52s(x). We will solve Eqs. ~12! and ~20! numerically
in Sec. V.

IV. THE CONTINUOUS LIMIT

Appendix A shows that for a,2, operator La(l0)2I

tends to zero when l0→0 for any function f (x) that has
second derivative f 9(x) for 0,x,L and has finite limits
f (0) and f (L). It can also be shown that for such functions
and a,2 there exists an operator @3,24,40#

Da[ lim
l0→0

l0
2a@La~ l0!2I # . ~22!

The result of this operator acting on any such function is
defined as

@Da f #~y !5PE
0

L sgn~x2y ! f 8~x !dx

2uy2xua
2

f ~0 !

2ya 2

f ~L !

2~L2y !a ,

~23!

where f 8(x) is the first derivative of the function f (x). This
operator is a self-conjugate operator similar to the double
differentiation operator d2/dx2. It can be expressed @3,24# as
the linear combination of right and left Riemann–Liouville
fractional derivatives of the order a . The difference of the
two operators

da~ l0![l0
2a@La~ l0!2I #2Da ~24!

decays as l0
22a when l0→0. Appendix A also shows that the

leading term of the operator da is proportional to the opera-
tor of the second derivative

da~ l0!5l0
22a

a

2~a22 !

d2

dx21o~ l0
22a!. ~25!

In analogy with the diffusion equation with continuous
time, we can define a superdiffusion equation @3,12,13,16#
based on Lévy flights. Instead of the discrete process defined
by Eq. ~5!, one can write

]P~x ,t !

]t
5

l0
a

t0
DaP~x ,t !, ~26!
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where t0 is the duration of each flight, and l0
a/t0 is the frac-

tional analog of the diffusion coefficient. Note that l0 plays a
role similar to the mean free path, and t0 plays the role of the
mean collision interval.

The operator Da has an orthogonal normalized set of
eigenfunctions f k(x), such that Da f k(x)5lk f k(x), and
f k(0)5 f k(L)50 @29,41#. Similarly to the solution of usual
diffusion equation, the solution of Eq. ~26! can be expressed
via separation of variables as a series of eigenfunctions

P~x ,t !5 (
k51

`

elkl0
at/t0 f k~x !E

0

L

f k~y !P~y ,0!dy . ~27!

In Ref. @16#, where the method of separation of variables for
the superdiffusion equation on a finite interval has been first
proposed, it has been assumed that the eigenvalues lk
asymptotically behave at large k as lk;2(k/L)a

,0
and that the eigenfunctions f k(x) can be well approximated
by the eigenfunctions A2/L sin(xpk/L) of the Laplace opera-
tor with absorbing boundary conditions. Numerical studies
@42# confirm these assumptions but show that eigenfunctions
f k and sines have different behavior near absorbing bound-
aries, namely, f k(x);xa/2 as x→0.

Having defined the properties of the operator Da , we can
derive the closed form expression for the average time spent
by the continuous Lévy flight process on the interval. Formal
substitution of Eq. ~22! into Eq. ~11! yields

^t&5t0^n&5

t0

l0
a @D a

21h#~x0!5

t0

l0
a g~x0!, ~28!

where function g(x) satisfies the equation

Dag~x !5h~x !521. ~29!

Note that g(x) has to satisfy boundary conditions g(0)50,
g(L)50. Otherwise, according to Eq. ~23!, the right-hand
side of Eq. ~29! would contain singularities. In the general
case, the equation

PE
0

Lsgn~y2x ! f 8~y !dy

2uy2xua
5h~x ! ~30!

with absorbing boundary conditions

f ~0 !5 f ~L !50 ~31!

belongs to a known class of generalized Abel integral equa-
tions with Riesz fractional kernel @24,29–31#. It can be
shown @29,31# that such an equation with boundary condi-
tions ~31! has a unique solution which can be obtained via
spectral relationships for Jacobi polynomials @24,31# or by
the Sonin inversion formula @31,32# ~see Appendix B!. Simi-
lar inversion formulas are given in Ref. @29#. In the case
h(x)521, the solution can be expressed in elementary
functions

g~x !5

2 sin~pa/2!

pa
@~L2x !x#a/2. ~32!

One can verify this solution by performing contour integra-
tion around the cut @0,L# on the complex plane and comput-
ing the residue of the integrand at infinity. It should be
pointed out that g(x) can be expanded in a series of eigen-
functions f k(x)

g~x0!52 (
k51

`

lk
21 f k~x0!E

0

L

f k~x !dx .

This expansion is similar in spirit to an approximation, ob-
tained in Ref. @16#, where the exact eigenfunctions were ap-
proximated by sines. Although approximation @16# correctly
predicts the power-law dependence g(x0);La for the points
x0 in the center of the interval, it differs from Eq. ~32! in the
proportionality coefficient and in the behavior near absorbing
boundaries @42#.

Note that for a.2, Eq. ~26! should be replaced @40# by
the standard diffusion equation with diffusion coefficient D
5lo

2a/@ to2(a22)# . In this case, the average time spent by
the flyer before absorption is given by the classical equation
^t&5x(L2x)/(2D). Note that the diffusion coefficient D re-
sembles the proportionality coefficient in Eq. ~25!.

One can argue that the expression ~32! may yield the av-
erage number of flights taken by the discrete Lévy flight
process in the limit of l0→0. Indeed, according to Eq. ~24!

La~ l0!2I5l0
a@Da1da~ l0!# , ~33!

where operator da(l0)→0, as l0→0. Formally expanding
(La2I )21 in powers of da , we obtain

@La2I #21
5l0

2a~D a
21

2D a
21daD a

21
1 . . . ! ~34!

and thus

^n&5l0
2a$g~x0!2@D a

21dag#~x0!1 . . . %. ~35!

Note that expansion ~35! is formal and may not converge.
We will test this assumption numerically in Sec. V. In order
to distinguish the average number of flights for the discrete
process, ^n&, from the continuous limit approximation, we
will denote the latter by na(x)

na~x0![l0
2ag~x0!5

sin~pa/2!

pa/2 F ~L2x0!x0

l0
2 Ga/2

5

sin~pa/2!M a~z2z2!a/2

pa/2
, ~36!

where z[x0 /L , M[L/l0.
Analogously, we will denote the continuous limit approxi-

mation for the average total path length by Sa . In the con-
tinuous limit, Eq. ~21! should be replaced by Eq. ~30! with
f (y)5Sa(y), h(x)5l0

2as(x), and absorbing boundary con-
ditions ~31!. In this case ~see Appendix B!, the Sonin for-
mula leads to an expression containing hypergeometric func-
tions
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Sa~x0!5

L~22a !

2~12a ! F 124
ca~z !1ca~12z !

a~a12 !BS a

2
,
a

2 D G
1

2LM a21sinS pa

2 D ~z2z2!
a

2

p~a21 !
, ~37!

where B(a ,b)[G(a)G(b)/G(a1b) is Euler B function

ca~z !5FS 22

a

2
,
a

2
,
a

2
12,z D z

a

2 11

and F is the hypergeometric function @39#

F~a ,b ,c ,x ![
G~c !

G~a !G~b ! (
n50

`
G~n1a !G~n1b !xn

G~n11 !G~n1c !
.

In case a51, corresponding to the Cauchy distribution, the
hypergeometric function ca(z) can be expressed in elemen-

tary functions c1(z)53/4@p/21sin21(2z21)22Az2z2#

and Eq. ~37! yields S1(x0)52L/Az2z2lnM /p1O(1) where
terms O(1) do not depend on M and can be found from Eq.
~37! by L’Hôpital’s rule.

Note that the average total path length traveled before
absorption by the Lévy flyer can be expressed in terms of
survival probability Q(t) of the Lévy walker: ^S&
5*0

`Q(t)dt . According to Ref. @27#, this survival probabil-
ity exhibits for t→` asymptotic exponential decay Q(t)
;exp(2uL1ut), where L1 is the main eigenvalue of the cor-
respondent problem. Substituting Q(t) by its asymptotic, we
can estimate ^S&;1/uL1u. Thus ^S& and 1/uL1u must have
identical asymptotic behavior for large L. Indeed, Eq. ~37!
yields Sa(x);L for 0,a,1 and Sa(x);La for 1<a,2,
in complete agreement with asymptotic approximations of
Ref. @27#.

Finally, we will find the probability Pr(x0) of the absorp-
tion by the right boundary in the continuous limit. According
to Eqs. ~13! and ~14!, Pr(x0) should, in continuous case,
satisfy Eq. ~29! with h(x0)52l0

2apr(x0), i.e.

DaPr~x0!52~L2x0!2a/2. ~38!

For x050, the flyer is immediately absorbed by the left
boundary, so Pr(0)50. For x05L , the flyer is immediately
absorbed by the right boundary, so Pr(L)51. Thus the sec-
ond term in the expression ~23! for DaPr(x0) is equal to
zero and the third term cancels out with the right-hand side.
Hence Pr(x0) satisfies homogeneous Eq. ~30! and boundary
conditions Pr(0)50, Pr(L)51. This solution can be ex-
pressed in terms of the homogeneous solution w0(x) ob-
tained in Appendix B

Pr~x0!5

E
0

x0
w0~y !dy

E
0

L

w0~y !dy

5S x0

L D
a

2
FS a

2
,12

a

2
,
a

2
11,

x0

L D
a

2
BS a

2
,
a

2 D
.

~39!

Note that the probability of the absorption by the left bound-
ary, P l(x0)5Pr(L2x0)512Pr(x0). For x0→0, the
asymptotic behavior of Pr(x0) is given by Pr(x0)
;(x0 /L)a/2 which is in complete agreement with the result
of Ref. @25# for the transmission probability of the photons
through the clouds of depth L.

V. NUMERICAL SOLUTION

The goal of this section is to treat Eq. ~12! and Eq. ~20!
numerically and to compare the results with the continuous
limit solutions Eq. ~36! and Eq. ~37!. To perform numerical
integration of Eqs. ~12! and ~20!, we replace the integration
by summation and the kernel p(x2y) by the matrix A i j , 0
,i,M , such that A ii50 and

A i j5
1

2 F 1

ui2 j ua
2

1

~ ui2 j u11 !aG , iÞ j . ~40!

Accordingly, the average flight length s(x) performed from
the point k5x/l0 is replaced by M2one-dimensional vector
sW with elements

sk5

l0

2~12a ! F 1

ka21
1

1

~M2k !a21
22aG . ~41!

The average number of flights for the process that starts from
point k5x/l0 is

^n&k5S (
m50

`

AmeW k•cW D 5@~I2A !21cW #k , ~42!

where cW is the vector with all components equal to 1, and eW k
is a unit basis vector with components eki5dki , where dki is
the Kronecker delta. Analogously, the average total length is
equal to

^S&k5l0S (
m50

`

AmeW k•sW D 5@~I2A !21sW#k . ~43!

The symmetric matrix R5(A2I)21 is the analog of the self-
conjugate operator (L2I )21. Using iterative techniques for
matrix inversion, we obtain the numerical solutions for ^n&
and ^S&.

In Fig. 1, we compare the numerical solution ~42! for
^n(x0)& and the continuous limit approximation na(x0)
given by Eq. ~36! for the case x05L/2. In order to test the
asymptotic convergence, we have to divide both functions by
(M /2)a. It can be seen that for x0 /l0@1, Eq. ~36! provides
good approximation for the average number of flights of the
discrete process defined by Eq. ~11!. Studying the difference
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between the numerical values of ^n&(M /2)2a and the con-
tinuous approximation 2 sin(pa/2)/(pa) for x05L/2, we
confirm that for 2.a.1 this difference decays as M a22

with M→` . This is in agreement with Eq. ~25!. However,
for a,1 the difference between the numerical solution and
the continuous approximation converges as M 21

.M a22.
The term M 21 is proportional to the error of replacement of
integration in Eq. ~12! by summation.

In Fig. 2, we compare the numerical solution ~43! for
^S(x0)& and the continuous limit approximation Sa(x0)
given by Eq. ~37! for the case x05L/2. In order to test the
asymptotic convergence in this case, we have to divide both
functions by (LM a21

2L)/(a21). It can be seen that for
x0 /l0@1, Eq. ~37! provides good approximation for the av-
erage total traveled length in the discrete process defined by
Eq. ~21!

Now we will examine the quality of the continuous limit
approximation in the vicinity of the absorbing boundary. For
simplicity we will study only the behavior of the average
number of flights. The approximation for the total path
length has similar problems. Figure 3 shows that for x0 /l0
51, the correction terms in Eq. ~35! cannot be neglected. As
shown in Appendix A, the operator da→0 for any fixed x0 if
l0→0, but does not vanish if x0 and l0 both approach zero,
so that their ratio x/l0→r.0. Accordingly, the value of ^n&
behaves for x0 /l05r , M→` as x(a)(rM )a/2, where x(a)
.2 sin(pa/2)/(pa) is some unknown function that can be
estimated numerically ~see Fig. 3!. It is likely that x(a) re-
mains positive as a→2. The analytical determination of the
function x(a) remains an unsolved problem. Nevertheless,
continuous approximation correctly predicts the leading fac-
tor M a/2 for the average number of flights started in the

vicinity of the absorbing boundary.
In summary, comparison of the numerical solutions for

the mean first passage time of Lévy flights and Lévy walks
and the exact solutions of these problems in the continuous
case suggests that fractional differential equation for super-

FIG. 1. The behavior of the scaled average number of flights
^n&(M /2)2a vs a for increasing values of M
550,100,200,400,800,1600,3200 in the case x05L/2 in comparison
with the continuous limit prediction of Eq. ~36!, 2 sin(pa/2)/(pa),
shown as a bold line. We see good convergence to the predicted
function except for the values of a'2. We extrapolate the values
^n&(M /2)2a for M→` ~circles! using their polynomial fits with
respect to M 21 for a<1, or with respect to M 22a for 1,a,2, or
with respect to (ln M)21 for a52.

FIG. 2. The behavior of the scaled average total path length
^S&(a21)/(LM a21

2L) vs a for increasing values of M
550,100,200,400,800,1600 in the case x05L/2 in comparison with
the continuous limit prediction of Eq. ~37! in the limit M→`

shown as a bold line. In this limit, continuous approximation fol-
lows the first term of Eq. ~37! for a,1 and the second term
sin(pa/2)/p for a>1. We see good convergence to the predicted
function except for the values of a'2.

FIG. 3. The behavior of the scaled average number of flights
^n&(M )2a/2 vs a for increasing values of M
550,100,200,400,800,1600,3200 in the case x05l0 in comparison
with the continuous limit prediction of Eq. ~36! 2 sin(pa/2)/(pa),
shown as a bold line. Although the values are close to the continu-
ous limit predictions, they converge to a different function x(a) as
M→` . To obtain x(a), we extrapolate the values ^n&(M /2)2a for
M→` using the same procedure as in Fig. 1. We assume that the
error bars are equal the discrepancies between the extrapolation and
the continuous limit in Fig. 1.
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diffusion Eq. ~26! with absorbing boundary conditions pro-
vides good approximation for discrete Lévy flights on a finite
interval with absorbing boundaries. However, this approxi-
mation breaks down when a→2 and in the vicinity of the
absorbing boundaries.

VI. ANALYSIS OF THE TOTAL PATH LENGTH:
IMPLICATIONS FOR BIOLOGICAL FORAGING

Recently, biological foraging has been modeled by Lévy
flights @7,33–37#. The case of nondestructive foraging ~de-
fined in Ref. @36# as case in which ‘‘target sites’’ can be
revisited not just once but many times! corresponds to x0
5l0, i.e., the forager starts its next search from the previ-
ously visited food site, located at the origin. The prey may
reappear at this site. Accordingly, coming back to the origin
may be profitable in terms of foraging efficiency, which is
defined @36# as the inverse average total path length before
finding next food site. With the help of Monte Carlo simula-
tions, it has been shown @36# that, in the case of nondestruc-
tive foraging, the foraging efficiency has maximum at a
51.

We confirm this result, using numerical solution ~43!. Fig-
ure 4 shows a semilogarithmic plot of ^S& versus a for x0
5l0 and various values of M. On can see that the minima,
amin(M), shift towards a51 as M→` . Heuristic approxi-
mations @36,37# suggest that foraging efficiency has a maxi-
mum at 12e , where e;(ln M)22. Consequently, the average
total path length should have minimum at the same point.
Figure 5 confirms this prediction for the numerical solution.
It shows the graph of amin(M) vs @ ln (M)#22, which is almost
a straight line with an intercept amin(`)'1.

In the following, we will prove this result using the con-
tinuous limit approximation ~37!. Accordingly, we will find
the behavior of Sa(x0) for the case when the starting point

x0 is selected in the vicinity of the absorbing boundary and
show that in this case Sa(x0) has a minimum at a→1. In
order to do this, we will present solution ~37! in a more
convenient form, which allows to separate leading singulari-
ties at z→0. After some transformations involving hypergeo-
metric functions @39#, we can rewrite Eq. ~37! as follows:

Sa~x0!5

2L~z2z2!
a

2

a21 F M a21sinS pa

2 D
p

2

~12z ! f 1~a ,z !

aBS a

2
,
a

2 D G
2

L~22a !

2~a21 ! F 12 f 2~a ,z !~12z !
a

2 11

2

4 f 3~a ,z !z
a

2 11

a~a12 !BS a

2
,
a

2 D G , ~44!

where

f 1~a ,z !5FS a ,2,
a

2
11, z D ,

f 2~a ,z !5FS 22

a

2
,
a

2
,12

a

2
,z D

and

f 3~a ,z !5FS 22

a

2
,
a

2
,
a

2
12, z D .

The first term in solution ~44! decreases as za/2, when z
→0, while the second part decreases as z. If we take the

FIG. 4. Semilogarithmic plot of numerical solutions of ^S& vs a
for the case x05l051 and various values of M
550,100,200,400,800. Circles indicate the positions of the minima
amin(M) which shift towards the vertical line a51, as M increases.
In addition, we show the analytical continuous limit approximation
Sa(l0) given by Eq. ~45! for M5800.

FIG. 5. The values of amin(M), determined in Fig. 4 as a func-
tion of (ln M)22. The line shows linear least square fit, obtained by
including a hypothetical limiting value amin(`)51.
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starting point x05rl0, where r is constant, then z5r/M ,
where M is the large number, and we can separate the leading
~with respect to M ) terms in solution ~44!

Sa~rl0!5ra/2
L

a21
@h~a !M

a

2 21
2z~a !M 2

a

2 #1LO~M 21!,

~45!

where

h~a !5

2 sin~pa/2 !

p
, z~a !5

2

aBS a

2
,
a

2 D
. ~46!

The above approximation accurately follows the solutions of
the discrete problem for a,1, when the term z(a)M 2a/2

dominates, but strongly deviates from that for a.1, when

the term h(a)M
a

2 21 dominates ~see Fig. 4!. The reason for
these deviations is the truncation of the nonleading terms in
the Eq. ~34!.

In contrast with the discrete solution and Monte Carlo
simulations of Ref. @36#, expression Eq. ~45! has two
minima: one at a511e(M ) and another at a52. We will
show that e(M )→0 as M→` . Let us expand h and z in
powers of e

h~11e !5h01h1e1 . . . , z~11e !5z01z1e1 . . . .

~47!

Note that h05z052/p , and hence the expression ~45! does
not have a singularity at a51. The location of the minimum
can be found by differentiation of the expansion for
S11e(rl0) with respect to e and equating the leading terms of
the order of ln M

e52

6~h11z1!13h0 ln r

h0~ ln M !2 1o~@ ln M #22!

5

6212 ln 223 ln r

~ ln M !2 1o~@ ln M #22!. ~48!

Indeed, Eq. ~48! shows that e(M )→0 as M→` and r stays
constant.

This analysis holds for any smooth functions h and z , so
long as h(1)5z(1) and, therefore, is likely to be valid in the
discrete case, in which, functions h(a)5hd(a) and z(a)
5zd(a) do not satisfy Eq. ~46!. Note that hd(a) can be
expressed in terms of function x(a) shown in Fig. 3, namely
hd(a)5ax(a). Analysis of Fig 3 shows that x(2).0. Con-
sequently, the minimum at a52 does not exist in the dis-
crete case.

VII. SUMMARY

We have studied Lévy flights in a finite interval with ab-
sorbing boundaries. In Sec. II, we have derived expressions
Eqs. ~11! and ~12! for the average total number of flights
~mean first passage time!. We also obtain a general recursion
relation Eq. ~13! for the average of the sum of arbitrary con-

tributions from each flight in the form of the Fredholm inte-
gral equation of the second kind. We applied this method to
derive the probability of absorption by one of the boundaries.
In Sec. III, we have derived expressions Eqs. ~20! and ~21!
for the average total path length of the Lévy flights which is
equivalent to the mean first passage time of the Lévy walks.

In Sec. IV, we have shown ~see Appendix A! how the
discrete Lévy flights are related to the fractional differential
equation Eq. ~26! of the superdiffusion with Riesz operator
Eq. ~23!. For the continuous process described by Eq. ~26!,
we derived exact analytical expressions Eqs. ~36!, ~37!, and
~39! for the mean first passage time, the average total path
length, and the probability of absorption by one of the
boundaries, respectively. All these quantities are the solu-
tions ~see Appendix B! of the fractional differential Eq. ~30!
with Riesz kernel and with different right-hand sides. In Sec.
V, we have compared these analytical solutions with numeri-
cal solutions obtained for the discrete Lévy flights ~see Figs.
1–3!. We have shown that fractional differential formalism
provides good approximation for the discrete Lévy flights in
the interval with absorbing boundaries except the case of a
→2 and the case when the starting point is in the vicinity of
an absorbing boundary. In the latter case the fractional dif-
ferential formalism yields correct scaling behavior with re-
spect to the interval size and distance to the boundary, but
gives an incorrect proportionality coefficient ~see Fig. 3!.

In Sec. VI, we have investigated the behavior of the av-
erage path length as a function of the starting point and as a
function of a . We have derived asymptotic expression Eq.
~45! for this quantity in the case when the starting point is
located close to the absorbing boundary. We have shown that
the expression for the average path length has a minimum at
a'1 if the process starts in the vicinity of the absorbing
boundaries ~see Figs. 4 and 5!. This result, as well as Eqs.
~39! and ~44!, can be applied to the problem of light trans-
mission through cloudy atmosphere @25,26#.

Similar fractional integral operators @3,13# — namely the
Riesz operator ¹a — can be used to treat the problem of the
Lévy flyer in the dimensions higher than one with randomly
distributed absorbing traps. Let L be a characteristic distance
between neighboring traps. Then we still expect that the av-
erage number of flights before absorption scales as La if the
process starts far away from the absorbing boundary and as
La/2 if the process starts in the vicinity of the absorbing
boundary. This result is sufficient to prove that the minimum
of the average total path length traveled by the flyer before
absorption is achieved at a→1, if the flyer starts in the vi-
cinity of the absorbing point.

Finally, we comment on the relevance of our findings to
biological Lévy flight foraging. Our results essentially con-
firm that Lévy flights with a51 ~or m52 in notation of Ref.
@36#! should theoretically provide the optimal strategy of for-
aging in the case of sparsely and randomly located food sites,
if any food site can be revisited many times @36#. The pres-
ence of the second minimum near a52 predicted by con-
tinuous limit approximation may indicate another possible
strategy for foraging, i.e, to perform Brownian walks in the
region of possible appearance of prey. Breakdown of the
continuous limit approximation in the vicinity of the absorb-
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ing boundary indicates that the results should depend on the
particular details of the model.
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APPENDIX A: EXISTENCE OF THE CONTINUOUS LIMIT
OPERATOR

We will show that operator Da is defined on any function
f (x) that has finite limits at both ends of the interval f (0)
and f (L) and finite second derivative f 9(x) at any inner
point x of the interval @0,L# . According to Eqs. ~6! and ~22!

Da f ~y !5 lim
l0→0

l0
2aH al0

a

2 F E
0

y2l0 f ~x !dx

~y2x !a11

1E
y1l0

L f ~x !dx

~x2y !a11G2 f ~y !J . ~A1!

Making partial integration of both integrals in Eq. ~A1! we
get

Da f ~y !5 lim
l0→0

H l0
2aF f ~y2l0!

2
1

f ~y1l0!

2
2 f ~y !G

1

1

2 F2E
0

y2l0 f 8~x !dx

~y2x !a
1E

y1l0

L f 8~x !dx

~x2y !aG J
~A2!

2

f ~0 !

2ya 2

f ~L !

2~L2y !a .

For a,2, the first term in Eq. ~A2! goes to zero as

1

2
l0

22a f 9~y !.

The second term converges to the principal value of the in-
tegral

I[PE
0

Lsgn~x2y ! f 8~x !dx

2uy2xua
, ~A3!

which exists for a,2 if f 8(x) has a derivative at x5y .
Subtracting Eq. ~A3! from the second term in Eq. ~A2!,

replacing f 8(x) in the integrand by its Taylor expansion
f 8(x)5 f 8(y)1 f 9(y)(x2y)1o(x2y), and combining it
with the first term of Eq. ~A2!, we reproduce Eq. ~25! for the
correction operator da(l0). This shows that the operator Da

is well defined for the class of functions with existing second
derivative.

APPENDIX B: SONIN INVERSION FORMULA

Equation ~30! belongs to a class of generalized Abel equa-
tions. In his classical works, Sonin @32# suggested a general
method for solving such equations. In particular @31#, an
equation

E
0

L@a1sgn~x2y !1a2#n

2ux2y ua
w~y !dy5h~x !, 0<x<L

~B1!

has a solution

w~z !5Bazb21
d

dzEz

L t12adt

~ t2z !b2a

d

dtE0

t ya2b

~ t2y !12b
h~y !dy ,

~B2!

where

Ba522 sin~pb !G~a !G21~b !G21~12b1a !

3~a11a2!2np21, ~B3!

and parameter b is determined by relations

sin@p~b2a !#5cn sin~pb !, ~B4!

cn5S a22a1

a11a2
D n

. ~B5!

Similar inversion formulas can be found in Ref. @29#.
In the case of Eq. ~30!, n51, a250, and a1521. Hence,

according to Eq. ~B5! cn521. Equation ~B4! has an infinite
number of solutions b5a/21k , where k is an integer. For
0,a,2, only two solutions with k50, k51 lead to the
converging integrals in Eq. ~B2!

w1~x !5Baza/221
d

dzEz

L

dtt12a~ t2z !a/2
d

dtE0

t

ya/2

3~ t2y !a/221h~y !dy ~B6!

and

w2~x !52Baza/2
d

dzEz

L

dtt12a~ t2z !a/221
d

dtE0

t

ya/221

3~ t2y !a/2h~y !dy , ~B7!

where

Ba5

4 sinS pa

2 D
paBS a

2
,
a

2 D
. ~B8!

Since Eq. ~30! contains f 8(x)5w(x), one can always satisfy
the first boundary condition Eq. ~31! by defining f (x)
5*0

xw(z)dz . Adding solution ~B6! for h(x)521 and solu-
tion ~B7! for h(x)51, one can see that the homogeneous
equation with h(x)50 has a nontrivial solution w05(Lx
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2x2)a/221. Hence the second boundary condition Eq. ~31!
can be satisfied if we select w5w12Cw0, with constant C
5L12a*0

Lw(x)dx/B(a/2,a/2). In case h(x)521, straight-
forward calculations lead to Eq. ~32!.

Now we will obtain the analytical solution for the average
total path length before absorption in the continuous process,
Sa(x). In this case, the right hand side of Eq. ~30!, h(x)
5s(x), is given by Eq. ~16!, and we can use its symmetry
h(x)5h(L2x). Thus, in order to satisfy the second bound-

ary condition Eq. ~31!, we should have w(x)52w(L2x).
To construct such a solution, we first find the solution w1(x)
for the first term in Eq. ~16! h(x)5x12a. Obviously, the
function 2w1(L2x) provides the solution for the second
term h(x)5(L2x)12a. The solution for the third constant
term is given by Eq. ~32! with a proper coefficient. Summing
up all three partial solutions and using various properties of
hypergeometric functions @39#, one can find the total solution
presented in Eq. ~37!.
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