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Abstract

We 4nd that area and population distributions of nations follow an inverse power-law, as is

known for cities, but with a di7erent exponent. To interpret this result, we develop a growth

model based on the geometrical properties of partitioning of the plane. The substantial agreement

between the model and the actual nation distributions motivates the hypothesis that the distribu-

tion of aggregates of organisms is related to land partitioning. To test this hypothesis we follow

the development of bacterial colonies of Escherichia coli, which, compared to humans, are on a

completely di7erent level of complexity. We 4nd that the distributions of E. coli colonies follow

an inverse power law with exponent similar to that of nations.
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1. Introduction

Universality in the behavior of complex systems often manifests itself in the form

of scale-invariant distributions that are essentially independent of the details of the

∗ Corresponding author. Tel.: +1-617-353-4518; fax: +1-617-353-9393.

E-mail address: buldyrev@bu.edu (S.V. Buldyrev).

0378-4371/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.physa.2003.09.041



654 S.V. Buldyrev et al. / Physica A 330 (2003) 653–659

Fig. 1. (a) Double-logarithmic plot of the histogram of areas, A, of the 255 nations of the world in

1998; the linear regression coeFcient is �N ≈ 0:93 (source: http://www.stats.demon.nl). (b) Double-

logarithmic plot of the histogram of areas for the evolution model; the linear regression coeFcient is

� ≈ 1.

microscopic dynamics. The interaction of individuals gives rise to a wide variety of

collective phenomena such as demographic evolution, cultural and technological devel-

opment, and economic activity that strongly di7er from individual dynamics. A striking

example of such cooperative phenomena is the formation of urban aggregates [1,2] and

nations. The study of hierarchy in social organization has a rich history. Half a century

ago, Zipf observed that the population distribution of cities follows a power-law behav-

ior with exponent �C ≈ 2 [3–8]. The Zipf law has a remarkable “universal” character

since it holds at the world level as well as within a single nation, and the exponent is

essentially independent of the area of the nation and its socio-economical conditions.

More recently, it has been observed [5] that the area distribution of satellite images

of cities, towns and villages around large urban centers also obeys a power-law with

exponent ≈ 2. A population distribution close to that obeyed by cities was obtained

through a model based on a master equation approach [9].

Individuals living in the same city are related to each other by a number of “links”,

de4ning the very concept of city [10]. In fact the exponent 2 for the degree distri-

bution is predicted by the preferential attachment model of a growing network [11].

People living within the same nation are also related to each other, e.g. they may share

linguistic or cultural heritage. The interactions among the inhabitants of a nation may

di7er from those among people living in the same city, being presumably “weaker”.

Thus we ask if the distribution of nations obeys the same law as that of cities. In order

to answer this question we analyze the area distribution of the world’s nations. The

log–log plot of the area distribution f(A) is shown in Fig. 1a for all world nations.

The distribution follows a power law, f(A) ∼ A−�N , where �N =0:93. The population

density of a nation depends only weakly on the area of a nation and we 4nd that

measures of size in terms of population or area lead to almost identical exponents. The

4ne structure of the nation area distribution due to small island nations and historical
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peculiarities such as Andorra and Monaco is not discernible on a log–log plot and is

ignored in the following models.

Although the social and historical processes that lead to distributions of nations

are complex, the essence of the distribution can be captured in a geometric model

which incorporates the features characterizing the land occupation process. There is

no restriction to the land accessible to a nation except that of the total existing land:

a suFciently powerful nation could expand to absorb other nations. Cities, being the

result of spontaneous aggregation of individuals around sites having attractive features,

can form at any distance from existing ones [4,5]. The formation of cities separates

the plane region into the overlapping land basins, and each new city attracts resources

from a newly formed basin of a certain size.

The basins of attraction are usually organized in a hierarchical fashion: the capital

of the nation draws (“attracts”) resources from the entire nation, capitals of provinces

resources from the provinces, centers of the counties resources from their counties, and

villages resources from the surrounding 4elds. If one assumes that the population of a

city or village is proportional to the area of its “basin of attraction” and that the local

hierarchy has many levels, each consisting of z subdivisions, it follows that the number

of cities in the nth level of the hierarchy is zn and the size of these cities is proportional

to z−n. The probability density of the cities of size A = z−n is thus proportional to

zn=(z−n−z−n−1)=A−2z=(z−1), leading to a power-law distribution with exponent �C=2.

Ideally, the resulting distribution is a step-function but, in reality, because z is not

constant and the sizes of subdivisions are not equal, a log–log plot of the distribution

yields an approximate straight line with a slope of −2. Changing the economical or

political situation may lead to a re-organization of the basins, the administrative capitals

being not necessarily the largest cities, but the underlying hierarchical structure remains

to govern the city size distribution.

The resulting size distribution is not modi4ed when a city expands to absorb nearby

cities and gives rise to a compact urban aggregate. In fact, unlike nations, cities usually

do not lose their land to neighbors: small towns and villages retain their identities and

usually become administrative districts of a larger aggregate that obeys, as shown in

Refs. [4,5], the same area distribution that holds for separate cities. Thus, the way in

which land is occupied by cities di7ers from that of nations: for cities the accessi-

ble land is fragmented into overlapping hierarchical basins while nations occupy all

available land area.

The above considerations suggest that the land occupation processes of nations might

be modeled in the framework of random partitioning of the plane [12–14]. One of the

simplest ways of partitioning the plane is to divide it using straight lines that are

randomly oriented and positioned. Each line divides the region into two portions, of

which the smaller is selected and the larger is further partitioned. Because this partition

model resembles the positioning of fences on open land, in the following we refer to

it as the fence model.

This model can be solved analytically. If, after n partitions, the land available for

further division is An, then

An+1 = rn+1An ; (1)
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where rn is a random factor uniformly distributed between 1
2

and 1. The area of the

nth portion Sn is

Sn = (1− rn)An−1 ; (2)

and its logarithm can be written as

ln Sn =

n−1∑

i=1

ln ri + ln(1− rn) + ln A0 : (3)

If we plot on the x-axis the values of ln Sn, we obtain random points the average dis-

tance between which is equal to −〈ln ri〉=1−ln 2 ≈ 0:3. The largest nation corresponds

to almost an entire continent A0, and the smallest one corresponds to A0e
−0:3n, where

n is the number of nations on the continent. Thus, the distribution of the logarithm of

a nation’s area in each continent is a Qat distribution between ln A0 − 0:3n and ln A0

described by the probability density

P(ln S) =
1

0:3n
: (4)

Some continents, such as Australia and North America, have very few nations and

some, such as Europe and Africa, have many. On the average, there are approximately

n = 50 nations per continent, hence we expect the approximate distribution of the

logarithms of the number of nations to be uniformly distributed between the average

continent area ∼ 2 × 107 km2 and 2 × 107e−15 km2 ≈ 6 km2, with a spread similar

to that observed in real nations distribution. The Qat distribution of the logarithms

const d(log S) corresponds to the distribution (const=S) dS of the areas, which is close

to what we observe in Fig. 1a.

The above model is oversimpli4ed, lacking the dynamic evolution of nation areas.

This concern can be alleviated by incorporating into the fence model the possibility

that nations can evolve, growing or shrinking. Thus, we propose an extension of the

fence model (called, in the following, evolution model) in which with probability 1
2
a

nation can grow or shrink by some random factor. This model is known as random

multiplicative process [16]. The P(A) histogram, remarkably, is not a7ected. To see

this, 4rst note that such change in area corresponds to the variable log(A) increasing or

decreasing by a random number, i.e., a simple random walk of the variable log(A). In

the absence of boundaries, the random walk probability density P[log(A)] converges to

a Gaussian distribution [15], corresponding to a lognormal distribution of A. The prob-

ability density of the lognormal distribution with the large enough variance is known

[16,17] to be well approximated around its central part by a power-law distribution

P(A) ∼ 1=A. Furthermore, in the presence of reQecting boundaries which con4ne the

random walk, its distribution converges to a constant over the con4ned region. As men-

tioned above, P(A) ∼ 1=A is equivalent to P[log(A)] ∼ const [18]. In the present case,

there are indeed such reQecting boundaries, since Amax =A0 and Amin is some minimal

size of the nation. Thus, P[log(A)] converges to a constant and, hence, P(A) ∼ 1=A

so the P(A) distribution is not a7ected by the addition of evolutionary dynamics. The

probability density of logarithms of nation areas obtained by numerical simulations
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Fig. 2. (a) Bacteria colonies on a Petri dish after 6 days from inoculation. (b) Double-logarithmic plot of

the histogram of areas, A, of the E. coli colonies; the linear regression correlation coeFcient is �E ≈ 0:89.

of the evolution model is shown in Fig. 1b. The model distribution agrees well with the

empirical data. This suggests the hypothesis that the distribution of social aggregates

is a natural result of the partitioning of the plane.

Social aggregation occurs in all animal species, though the kind and depth of the

relationships among individuals may vary enormously. At the opposite extreme of

the complexity scale with respect to humans, there are unicellular organisms such as

bacteria. Hence, analyzing aggregation processes of bacteria may provide a signi4cant

test of our hypothesis that plane partitioning underlies the distribution of aggregates of

organisms. To this aim bacterial colonies of Escherichia coli were grown on a Petri

dish. It is known that bacterial colonies grown on a semisolid agar substrate exhibit a

rich variety of patterns under the inQuence of stress, chemical gradients, agar hardness,

temperature and other environmental factors (see Refs. [19–25]). In order to elucidate

basic geometrical features, in our study the colonies are grown under nutrient rich

conditions, where the individual colony shapes are compact and do not exhibit tip

splitting, branching or more complex structures [26,27]. The colonies are allowed to

evolve for about 5 or 6 days after inoculation. Through a digital camera coupled to a

microscope we analyze the structure of the colonies (Fig. 2a) and calculate their area

distribution PE(AE) (Fig. 2b). We 4nd that the distribution can be 4t by a power-law

function, PE(AE) ∼ A
�E
E , with �E ≈ 0:89. The value of �E is close to the power-law

exponent �N for land area distributions of nations.

In spite of the enormously di7erent scales and degree of complexity of the social

aggregates analyzed, nations and bacterial colonies, our results point to the possible

identity of the power-law exponents of their respective area distributions. Although

the slopes of the distributions for bacteria and nations are similar, the broadness of

these distributions are dramatically di7erent from each other, suggesting that bacterial

colonies evolve according to the evolution model with comparable Amin and Amax rather

than according to the fence model.
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2. Methods

2.1. Pattern generation in bacterial colonies

Using a Monte Carlo Java Applet from the Boston University Center for Polymer

Studies [28], we generate a random pattern of 50 spots within a circle of the same

diameter as the 50 mm Petri dishes used. This pattern is transferred one spot at a time

to a Petri dish containing nutrient rich agar (Bacto-Agar from Difco). 10 �l aliquots

from a solution of wild type E. coli bacteria, a gift from Prof. G. Jacobson, are spotted

onto the agar with a platinum wire. The wire is Qame-sterilized between inoculations.

Bacterial growth occurs in an incubator at 37◦C, in darkness. At periodic intervals, we

take the plates brieQy to a microscope station for recording images. Photomicrographs

of the petri dishes are taken with a digital camera coupled to a microscope. Cultures

are followed in this manner for about 6 days. Images are analyzed using Scion Image,

which is a PC port of the popular NIH Image analysis package [29], in order to identify

the individual colonies, and to determine the enclosed area of each. Colonies that were

initially randomly spotted near each other grew until they apparently touched each

other. These were counted as separate colonies.

Acknowledgements

We thank M. Batty, R.S. Dokholyan, G. Jacobson, H.A. Makse, and S. Redner for

interesting and stimulating discussions. We thank NSF for support. N.V.D. is supported

by NIH postdoctoral fellowship (GM20251-01).

References

[1] M. Batty, P. Longley, Fractal Cities, Academic Press, San Diego, 1994.

[2] M. Batty, Y. Xie, Environ. Plan. A 28 (1996) 1745–1762.

[3] G.K. Zipf, Human Behavior and the Principle of Least E7ort, Addison-Wesley, Cambridge MA, 1949.

[4] H.A. Makse, S. Havlin, H.E. Stanley, Nature 377 (1995) 608–612.

[5] H.A. Makse, J.S. Andrade, M. Batty, S. Havlin, H.E. Stanley, Phys. Rev. E 58 (1998) 7054–7062.

[6] D.H. Zanette, S.C. Manrubia, Phys. Rev. Lett. 79 (1997) 523–526.

[7] X. Gabaix, Q. J. Econom. 114 (1999) 739–767.

[8] X. Gabaix, Y. Ioannides, The evolution of the city size distribution, in: V. Henderson, J. Thisse (Eds.),

Handbook of Urban and Regional Economics, Vol. 4, North-Holland, Amsterdam, 2004.

[9] M. Marsili, Y.C. Zhang, Phys. Rev. Lett. 80 (1998) 2741–2744.

[10] A.-L. BarabUasi, Linked: The New Science of Networks, Perseus, Cambridge, 2002.

[11] R. Albert, A.-L. BarabUasi, Rev. Mod. Phys. 74 (2002) 47.

[12] A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR 31 (1941) 99–101.

[13] B. Derrida, H. Flyvberg, J. Phys. A 20 (1987) 5273–5288.

[14] A.Z. Mekjian, K.C. Chase, Phys. Lett. A 229 (1997) 340–346.

[15] G.H. Weiss, Aspects and Applications of the Random Walk, Elsevier, Amsterdam, 1994.

[16] B.J. West, M.F. Shlesinger, Int. J. Mod. Phys. B 3 (1989) 795.

[17] R.N. Costa, M.P. Almelda, J.E. Moreira, J.S. Andrade, Physica A 322 (2003) 698–700.

[18] D. Sornette, R. Cont, J. Phys. I France 7 (1997) 431–444.

[19] E. Ben-Jacob, Contemp. Phys. 38 (1997) 205.



S.V. Buldyrev et al. / Physica A 330 (2003) 653–659 659

[20] E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49 (2001) 395–554.

[21] E. Ben-Jacob, I. Cohen, O. Shochet, I. Aranson, H. Levine, L. Tsimring, Nature 373 (1995) 566–567.

[22] H. Fujikawa, M. Matsushita, J. Phys. Soc. Jpn. 58 (1989) 3875–3878.

[23] M. Matsushita, H. Fujikawa, Physica A 168 (1990) 498.

[24] R.E. Goldstein, Phys. Rev. Lett. 77 (1996) 775–778.

[25] E.O. Budrene, H.C. Berg, Nature 376 (1995) 49–53.

[26] S. Arouh, H. Levine, Phys. Rev. E 62 (2000) 1444–1447.

[27] M.P. Brenner, L.S. Levitov, E. Budrene, Biophys. J. 74 (1998) 1677–1693.

[28] The URL for the program is at http://polymer.bu.edu/java/java/montepi/montepiapplet.

html

[29] NIH Image public domain program,developed at the U.S. National Institutes of Health and available at

http://rsb.info.nih.gov/nih-image


