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We find that the dynamics of growth phenomena exhibits the feature that growing sites are natu-

rally partitioned into two ‘“dynamical phases,

I3}

an extinct phase (the sites at which no further

growth occurs, in a statistical sense) and a surviving phase (wWhere growth occurs at some later time).
As examples, we treat two common growth phenomena, invasion percolation and diffusion-limited
aggregation. For both examples, we find “subclusters” which exhibit spatio-temporal fluctuations
that are scale invariant. We find a 1/f% power spectrum for both models. Also, we identify an or-

der parameter and find an associated exponent B.

Despite all the activity in recent years on the topic of
disorderly growth phenomena, the existing temporal fluc-
tuations of the actual growth process have not been ad-
dressed,! much less understood. Rather, the emphasis
has been placed on the structure and its characterization
by various fractal exponents. One possible reason for this
state of affairs is that “mass=time” —i.e., a new particle
is added at each tick of a clock. As a result, it is assumed
that the temporal evolution has no particular information
of physical interest. Indeed, experimentally observed
physical phenomena such as 1/f noise have not been as-
sociated with growth models, and studies of such tem-
poral fluctuations are restricted to models of a rather
different character. In this Rapid Communication we
propose an altogether new approach to understanding
spatiotemporal fluctuations in growth phenomena. We
illustrate our method by explicit calculations for two of
the most-studied prototype models in growth phenome-
na, invasion percolation’ and diffusion-limited aggrega-
tion (DLA).>*

Our key result is the identification of a natural process
by which the dynamics of the growth phenomenon itself
segregates extinct (i.e., inactive, in a statistical sense) sub-
clusters. We find that these subclusters exhibit spa-
tiotemporal fluctuations that are scale invariant; in par-
ticular, we find that invasion percolation exhibits 1/f¢
noise with ¢ near unity, while for DLA ¢~=2. Moreover,
we identify the associated order parameter j as the surviv-
ing (active) fraction of the cluster, and introduce a corre-
sponding order-parameter exponent 3. We calculate
and compare our results with the prediction of a “‘mean-
field”-type approach.’

Consider first the invasion percolation model, without
trapping. First one assigns to every site of a lattice a ran-
dom number between zero and one. At time 1 the origin
is occupied, but at each successive time interval growth
occurs at the perimeter site with the lowest random num-
ber. Figure 1(a) shows a cluster of “mass” M=4000
grown on a square lattice. As the cluster grows, the nor-
malized distribution of random numbers N(p) on the per-
imeter sites will change. Since always the smallest ran-
dom number is becoming a part of the cluster, the distri-
bution will favor large random numbers. In the infinite
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mass limit the dynamics gives rise to a “critical probabili-
ty” p. at which N(p) jumps from zero to a nonzero value
of 1/(1—p,).

We propose that perimeter sites may be partitioned
into two “dynamical phases,” an extinct phase where are
the sites at which no further growth occurs, and a surviv-
ing phase where growth occurs at some later time. The
partitioning of clusters is based on the question where,
for example, the flow in fluid displacement actually takes
place. In the infinite mass limit these two phases are
separated by p.: the extinct phase has p > p_, the surviv-
ing phase has p <p.. However, at finite sizes we can par-
tition the perimeter sites into those sites with p >p* (ex-
tinct sites) and those with p <p* (surviving sites). Here
p* is defined by®

p*=2(p)—1, (1a)
where
1
(p)=[ pMpldp . (1b)

Note that in the infinite mass limit, {p ) =(1+p,)/2, and
p*=p.. However, at finite sizes, p* does not equal p,.

Each surviving site can be traced back to the original
seed, choosing at each step the neighbor site which was
grown most recently. We call the paths thereby obtained
surviving paths. If all the surviving paths are removed
from the cluster, the cluster splits into “subclusters” [Fig.
1(a)]. Each subcluster is thus an extinct branch of mass s
created from a ‘“‘perturbation’ on a surviving path. The
surviving paths are physically distinct from the extinct
branches in the sense that they ““carry the flow.”

To introduce the concept of time, we associate with
each cluster site a number giving the order in which the
site becomes part of the cluster. Then the lifetime t of an
extinct branch is the difference between the first site and
the last site on that branch.’

Figures 1(b) and 1(c) show the distribution D (s) of
sizes and D (¢) of lifetimes. We find that both distribu-
tions follow power laws

D(s)~s!"7, (2a)
D(s)~t97?%, (2b)
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FIG. 1. (a) Invasion percolation cluster of mass M =4000.
The surviving paths are shown as heavy lines. The remainder of
the cluster is a disconnected set of extinct branches. The surviv-
ing perimeter sites are shown in green, the surviving paths in
blue, and the extinct branches in red. (b) The size distribution
D(s) of extinct branches. (c) The distribution D(t) of lifetimes
t. The slopes of the straight lines are —1.69 and —0.93, respec-
tively. The distributions are based on 40 clusters of mass
M=4000 (totaling ~ 6000 extinct branches). The straight line
fits to the data include points with 3 <5 <362 (3 <t <362).
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with 7~2.69 and ¢=~1.07. The finite size does not ap-
pear to influence D (s) below s =s,~M. In contrast, the
finite-size effect is apparent in D (¢) for large ¢. Since
s, <t, <M, it follows that t,~M.® By calculating D (1)
for other values of mass, we have confirmed this cross-
over scaling.

The perturbations may be interpreted as a “‘noise” on
the surviving paths. Since the distribution of lifetimes

Iog,os

FIG. 2. (a) DLA cluster of mass M=4000. The surviving
paths are shown as heavy lines. The rest of the cluster is a
disconnected set of extinct branches. The surviving perimeter
sites are shown in green, the surviving paths in blue, and the ex-
tinct branches in red. (b) The size distribution D (s) of extinct
branches, based on 40 clusters of mass M=4000 (totaling
~14000 extinct branches). The slope of the straight line is
—1.50 and is fitted to the data for 3<s <45. (c) D(s)s"* vssp*
based on 20 clusters of mass M =400 (X ), M=1000 (O), and
M=4000 (A). The data obtained for 40 clusters with mass
M=4000 are also given (/) for comparison. (d) MD(t) vs t /M,
symbols as in (c). The large scatter at small ¢ is an effect of the
broad distribution that only leaves a few number of lifetimes in
the first “bins.”
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FIG. 2. (Continued).

(2b) translates directly into the power frequency spec-
trum,

P(H=[iDwdi~fv, 3)

the result =1 would imply that the noise is 1/f noise.

Next consider DLA.> One releases a random walker
from a random point on a circle surrounding the cluster,
and growth takes place when the random-walker steps
onto a perimeter site.’ Figure 2(a) shows a typical cluster
of mass M=4000 grown on a square lattice. Using the
electrostatic formulation,* the growth probabilities along
the perimeter are determined by solving the Laplace
equation V2¢=0 where the potential ¢ satisfies $=0 on
the cluster and ¢=1 on the surrounding circle. At the
perimeter, the growth probabilities p; are proportional to
the field, p; ~ |V¢;|.

To identify the surviving sites we note that the analog
for DLA of p* can be found from the spectrum
fla)=InN(a)/InL, where 2L is the diameter of the
cluster and N(a)da is the number of exponents

a=—Inp/InL in the range [a,a+da). Thus, N(a)
~L/'® and p~L ~% and the probability P(a)da that
the random walker steps on a perimeter site with the ex-
ponent a is given by

P(a)=N(a)p~N(a)L *~L/ (@~ (4)

Since the probability is unity that the next growth occurs
at some site,

fP(a)da=1 . (5a)

Integrating (4), we find
1= [Pla)da~ [L/ @ %da~L/ <D~ = (5p)

where a* is determined by steepest descent, f'(a*)=1.
Hence from (5a) and (5b), f(a*)=a*, while f(a) must
be less than a for all other values of a. From (4), P(«a) is
a delta function, P(a)=6(a—a*) in the large-L limit.
Thus for a finite system,

a*= [aPaida=[ |- 1% |N(a)pda
Inp;
—-; ——h—l—[—.— Di - (6a)

Defining p* through a* = —Inp* /InL, we obtain
Inp*= 3 p;Inp; , (6b)

which expresses p* as the dominating probability.

We now identify the surviving sites for DLA as those
perimeter sites with growth probabilities p =p*. Again,
these sites are traced back to the seed to find the surviv-
ing paths [Fig. 2(a)] and, removing these, we obtain a set
of extinct branches. Figure 2(b) shows the size distribu-
tion D (s), from which we find 7=~2.50. The largest s is
nearly 10 times smaller than that of invasion percolation.
This gives a smaller scaling regime and a more pro-
nounced crossover. To demonstrate that the falloff is due
to the finite-size effect, we have also evaluated the distri-
butions D(s) for M=400 and M=1000. Figure 2(c)
shows D (s)s™"! versus sp*. The data collapse implies
that D (s) is well described by the scaling form

D(s)=s'"""g(s/s.), (7a)

where s, ~p*~1/7

x <<1.

We also calculate D(t) for DLA; from (3) we find
@=2. A data collapse for D (¢) of different cluster masses
yields the scaling form [Fig. 2(d)]

D(t)=h(t/t.)/t. , (7b)

, with 0 =~1 and g(x) a constant for

with t,~M and h(x) constant for x <<1. The long sur-
viving times for DLA correspond to a large number of
surviving paths [Fig. 2(a)], compared to essentially one
surviving path in invasion percolation [Fig. 1(a)].

Next we discuss the order parameter. For both in-
vasion percolation and DLA clusters we may define the
“deviation from criticality”
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e=lp*—p.l, (8a)

where p. =0 for DLA since the growth probabilities con-
verge to zero in the infinite mass limit. As the cluster
grows, €e—0, and the order parameter is

jle)=N,(e)/M~éP, (8b)

where N, is the number of surviving perimeter sites. '*!!

To evaluate B for invasion percolation, note'? that the
excess areas under N(p) on both sides of p. scale as M " 7.
Hence j~M ~? and [p*—p.|~M ~°. Hence

B=1. (9a)

For DLA, B is related to the fractal dimension D. Since
p*~L _“*~M_°’*/D, and the number of surviving sites
N, ~Lf‘“*)~p*—7f, where R=f(a*)/a*, (8b) yields
j~p* R p*D/a* _p*l(D/a*)=R) At large values of L,
R —1. Since P(a*)=8(a—a*), a* is also the informa-
tion dimension. For DLA it is generally accepted that
a*=1."% Hence'

B=D—1. (9b)

Finally, we extract the scaling behavior for the total
number of extinct branches N,(M) on a cluster of mass
M, based on the observation that essentially all branches
become extinct (j —0). This implies

N, (M){s)~M , (10)

where (s) = f sD (s)ds, and the left-hand side is the total

mass of the extinct branches. Since s, ~M for invasion

percolation, and {s)~s2"",

N,(M)~M? (11)

with y=7—2=~0.69. For DLA, (s)~p*~7, where
y=(3—7)/0~0.50. Since p*~M VP y=1—y/D
=~0.71. The scaling relation 8=(7—2)/0 does not apply

here. We can, however, think of the order parameter as
originating from clusters larger than a certain size
so~lp*—p. "%, where o,=(r—2)/B. For invasion
percolation, o0y=y. Surprisingly, we find this relation to
hold for DLA as well.

We can compare our results to the prediction 7=3 and
¢=1 in the “mean-field” limit, in which growth in
different regions is statistically independent.> Consistent
with a “burst” dynamics,? we find that invasion percola-
tion behaves temporally mean-field-like. Conversely, the
ramification in DLA manifests in a spatial mean-field be-
havior.

In conclusion, we have proposed a framework for
quantifying spatiotemporal fluctuations in growth phe-
nomena. We find that perturbations grow with all time
and length scales. The fluctuations are described by a
new set of critical exponents, which we have determined
for invasion percolation and DLA. The burst dynamics
of invasion percolation and the ramification of DLA cor-
respond to exponents that are close to the values for a
general noninteracting branching process.

Experimentally, surviving sites are found by observing
the interface over a small time period.'® If the structure
is ramified, the surviving paths can be determined and the
extinct branches obtained. For experiments in the DLA
universality class, p* can also be estimated since the
small growth probabilities do not contribute to p*, and
the large probabilities are well approximated by the local
growth. Aside from geometrical methods, the critical ex-
ponents 7 and ¢ can be experimentally measured by
directly observing the spatial and temporal fluctuations. '°
The noise spectrum can also be obtained experimentally
from the temporal behavior of velocity or pressure.

We thank the National Science Foundation and the
Office of Naval Research for financial support.
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FIG. 1. (a) Invasion percolation cluster of mass M=4000.
The surviving paths are shown as heavy lines. The remainder of
the cluster is a disconnected set of extinct branches. The surviv-
ing perimeter sites are shown in green, the surviving paths in
blue, and the extinct branches in red. (b) The size distribution
D (s) of extinct branches. (c) The distribution D (z) of lifetimes
t. The slopes of the straight lines are —1.69 and —0.93, respec-
tively. The distributions are based on 40 clusters of mass
M=4000 (totaling ~ 6000 extinct branches). The straight line
fits to the data include points with 3 =<5 =362 (3 <t < 362).
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FIG. 2. (a) DLA cluster of mass M=4000. The surviving
paths are shown as heavy lines. The rest of the cluster is a
disconnected set of extinct branches. The surviving perimeter
sites are shown in green, the surviving paths in blue, and the ex-
tinct branches in red. (b) The size distribution D (s) of extinct
branches, based on 40 clusters of mass M=4000 (totaling
~ 14000 extinct branches). The slope of the straight line is
—1.50 and is fitted to the data for 3<5 <45. (c) D(s)s'  vssp*
based on 20 clusters of mass M =400 ( X ), M=1000 (O), and
M=4000 (A). The data obtained for 40 clusters with mass
M =4000 are also given (/\) for comparison. (d) MD (1) vst/M,
symbols as in (c). The large scatter at small ¢ is an effect of the
broad distribution that only leaves a few number of lifetimes in
the first “*bins.”



