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A thermodynamical formalism for resistor networks is developed in order to extract full 
information on the multifractal scaling structure. We introduce a matrix representation and 
study the moments of the voltage distribution 

2 ( / 3 )  = ~ IV,[ ~ ¢¢ N -~¢~ , 
i=1 

where N is the number of resistors. We find a generic phase transition at/3 =/3c = -1.  Also, 
we develop a transfer matrix technique which determines all even positive moments. The 
thermodynamical formalism is applied to the Hilfer-Blumen hierarchy of generalized Sierpin- 
ski gasket fractal networks, and the crossover from fractal to lattice behavior is studied. At 
this crossover we find a sharp phase transition in the second moment (/3 = 2). 

I. Introduction 

Much  a t t en t ion  has been  focused  recen t ly  on the  scal ing p r o p e r t i e s  charac-  

ter iz ing res i s to r  n e t w o r k s  [1-3] .  Typica l ly  one  d e t e r m i n e s  how the  m o m e n t s  of  

the  vo l tage  d i s t r ibu t ion  Z ( / 3 )  scale with the  size L or  wi th  the  n u m b e r  of  b o n d s  

N ( N  ~ Ldf  where  df is the  f rac ta l  d imens ion) .  H e r e  

N 

i = l  

where  N is the  n u m b e r  of  res is tors .  This  def ines  a func t ion  F( /3 ) .  W h e n / 3 ( / 3 )  

is non l inea r ,  the  scal ing s t ruc ture  is d e n o t e d  as mul t i f rac ta l  s ince it is cha rac te r -  

ized no t  by  one  bu t  by  an infini te  set  of  exponen t s .  No t i ce  t h a t / 3 ( 0 )  = - 1  and 

t h a t / ~ ( 2 )  yields  the  dc resis t ivi ty  e x p o n e n t  ~', F (2 )  = ~/d  e. 

To d e t e r m i n e  /3(/3) one  finds in prac t ice  the  sum 2 ( / 3 ) ,  and  e s t ima tes  the  

scal ing exponen t s  f rom the  l oga r i t hm of  this sum re la t ive  to the  l oga r i t hm of  
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the size. However,  it turns out that the negative moments ( i .e . /3  negative) are 
very sensitive to boundary conditions, such as V, the applied voltage. For 
example, consider the Sierpinski gasket of fig. la.  One corner is placed at 
potential th = 1, the other at potential ~b = 0, and the top is at potential 
~b = th0 = 1 - V. Also shown are the voltage drops across each of the three unit 
resistors. Fig. lb shows this structure at the first level of construction. The 
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Fig. 1. (a) Notat ion for potentials ~b and voltage drops Vj [ j  = 1-3] for the basic triangle from 
which are generated the hierarchy of Sierpinski gasket fractal resistor networks. Note that V is the 
only tunable  parameter .  
(b) Notat ion for potentials (k and voltage drops V,,j for the generator  for the b = 2 member  of the 
hierarchy of fractal resistor networks (b = 2 is the Sierpinski gasket). Note that if the parameter  V 
is chosen to be 31 , then the voltage V1. 2 is strictly zero. Hence the negative moments  of Z ( f l )  of eq. 
(1) are dominated by 1/1.2 when V is close to ~3. 
(c) /7(/3) for values of V near 0.4 found from the second and third levels of construction (N = 3 3 
and N = 3 4 bonds). To f ind/7(/3) ,  we (i) calculate all the voltage drops in the network,  (ii) form 
the parti t ion function Z ( f l )  of eq. ( i ) ,  and (iii) extract /3(/3)  from knowledge of the Z(/3)  for two 
different values of N. 
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potentials at the three new nodes are functions of V, found by straightforward 
application of Kirchoff's laws to be ~b 1 = ( 3 -  V ) / 5 ,  ~b 2 = 2 ( 2 -  V ) / 5 ,  and 
~b 3 = (3 - 2V)/5.  Note that if V = ½, then the voltage drop t,b0 - ~b2 = 0 so the 
negative moments in (1) diverge to infinity. Similarly, if V is very close to ½, 
the negative moments are large and extremely sensitive to the actual choice of 
V. Thus the system is "sensitive to initial conditions." 

At higher levels of construction of the gasket, there will occur additional 
choices of V for w h i c h / 3 ( ~  is dominated by a bond with zero voltage drop. 
For example, fig. lc shows F(/3) for a range of values near V= 0.4 for the case 
of the second and third levels of construction. To find/3(/3), we (i) calculate all 
the voltage drops in the network, (ii) form the partition function Z(/3) of (1), 
and (iii) extract/3(/3) from knowledge of the Z(/3) for two different values of 
N. Thus fig. lc is obtained for two levels, with N = 3 3 and N = 3 4 bonds. 

The existence o f  such suddenly occurring close-to-zero voltage drops has 
nothing to do with the scaling properties. To repair the disadvantage of extreme 
small voltage drops we generalize to higher dimensions, embedding the set of 
voltage drops in a "voltage" space of dimension d v > 1, i.e. combining the 
voltage drop into "voltage drop vectors" with d v components. We show that by 
doing this, further information is gained on the voltage distribution. Moreover, 
we introduce a natural and powerful transfer matrix technique which deter- 
mines the scaling exponents for all even positive moments Z(2m). In this 
paper, we apply a generalized thermodynamical formalism to an infinite 
hierarchy of Sierpinski gasket fractals [4] that are strictly self-similiar. The 
generator is an equilateral triangle divided into a number N b = b(b + 1)/2 of 
smaller equilateral triangles, where the number of triangles along a side is 
denoted b, see fig. 2. 

Recently, this hierarchy of Sierpinski gasket fractals has been studied in 
order to derive the transport properties at the crossover from fractal to 

b=2 b=5 b=4 

Fig. 2. Generators for small b members of the hierarchy of Sierpinski gasket fractal networks, 
showing also the notation for the matrices Mj used in the text. 
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nonfractal geometry. The spectral dimension d~ of the first 200 members of the 
family was calculated by Borjan et al. [5], who determined d~ = ds(b ) to 
increase monotonically from 

21n3 
ds(2) = In 5 - 1.365 (2a) 

to the value d~(200)= 1.643, but they were not able to find the asymptotic 
behavior of d~(b) as b approaches infinity. Milogevid et al. [6] extended the 
calculations to include the first 650 members and found that d~(b) approaches 
the asymptotic value ds(~ ) = 2 following the law 

In(In b) c e ( l n ( l n  b) '~ 
d~ = 2 In b In b k (In b) 2 ] " (2b) 

The main correction was recently found analytically by Dhar using Fourier 
analysis [7]. 

All these studies are based on the relation between the spectral dimension ds 
and the dc resistivity exponent ~, 

2dr 
ds- (3) 

Due to the strict self-similarity for the Sierpinski gasket type fractals, both 
= ~(b) and df = dr(b) are given from the generator, ~(b) by its de resistance 

R b from one corner to the other, 

~ _  ln(3Rb) 
In b ' (4) 

and df(b) by its number of triangles Nb, 

(1) 
df - - -  - 2 - C (5) 

In b ~ - b  " 

Since the correction from d f ( o o )  = 2 for the fractal dimension d,(b)  only is of 
order l / In  b, both the first and second correction to the spectral dimension 
come from the asymptotic behavior of the dc resistance Rb, which accordingly 
is found to scale logarithmically [6], 

R b ~-  a In b , (6) 

with a = 1.0827. Hence, in eq. (2b) c = ln(3a/2) = 0.4850. Milo~evi6 et al. [6] 
pointed out that this logarithmic behavior also is found in the case where all 
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Fig. 3. (a) The case where the left-leaned resistors have resistance r ( 0 <  r < 1). (b) Reductions 
into unit resistor networks for the case r = 0. 

resistors in the generator  that are learned, for instance, to the left are put to 
zero, see fig. 3. Here  we generalize the above considerations to all positive 
moments  of the voltage distribution. In particular, we show that for the 
configuration with zero left-leaned resistors the functions F(/3) has a kink at 
/3 = 2 (a "phase transi t ion") ,  and we argue that this is true also for the general 

hierarchy. 

2. Thermodynamical formalism 

To extract the information on scaling we shall introduce a matrix representa-  
tion. Consider first the Sierpinski gasket (b = 2). The generator  has N b = 3 

triangles, each of which has 3 voltage drops as labeled in fig. lb.  Since 
Kirchoff 's  laws are linear, the voltage drops in the generator  can be obtained 
by a linear map (a matrix) f rom the voltage drops across the original triangle of 
fig. la.  Adopting the sign convention shown in fig. 4, V 3 = V 1 - V2, so we do 
not need 3 x 3 matrices but ra ther  2 x 2 matrices Mg [i = 1, 2, 3] where M i maps 

Fig. 4. Sign convention (indicated by arrows) adopted at all levels for the Sierpinski gasket 
fractals. 
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the voltage drops (V 1, V2) to (1//, 1, V,.,2 ) (fig. 1). Moreover,  it is sufficient to 
obtain M 1 since M 2 and M 3 are obtained by rotation. By inspection 

1 (  1 0) (7a) 
M1 = 5 - 1  3 ' 

1(2 1) 
M2 = U - 1 M I U  = 5 1 2 

and 

M3 UMIU 1 1 ( 3  - 1 )  (7c) 
= = 5 0  1 '  

where 

U 3 = - I  (7d) 

is the identity matrix, or 

10/ 
For b > 2, there are N b matrices M 1 . . . . .  MNb, which can be obtained either 
by a succession of star-triangle transformations [3, 5, 6] or by solving Laplace's 
equation (using, e.g., the standard relaxation method) on the generator for just 
two different initial conditions, for instance V =  0 and V =  1. 

We emphasize that all moments (not only the dc resistance) are determined 
from the properties of  the generator. According to the strict self-similarity the 
potentials at the triangle corners will not change by raising the level, i.e. 
replacing every resistor triangle with the resistor generator. Therefore, the 
voltage drops at higher levels are determined from a simple tree structure as is 
shown for the Sierpinski gasket in fig. 5a. The initial condition is given by a 
vector (1, V) where the first coordinate is taken to be 1 by normalization. 

In order to extract all scaling properties properly we first notice that the tree 
structures for the hierarchy of Sierpinski gasket fractals are very similar to the 
tree structures for simple multiscale Cantor sets (see fig. 5b), which is the 
one-dimensional analog and often have been used to illustrate multifractal 
scaling behavior [8]. In these Cantor sets a whole set of scaling exponents Ej 
are obtained, describing the decay of step sizes A, defined by 

z~j ~- FI mj, ~ N -Ej , (8) 
i=1 
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Level 

A\ 
1 Md,~) M2(~,) ~ m I m~ rn 3 

i/q\i 
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a b 
Fig. 5. (a) Tree structure from which all relevant thermodynamic information can be derived for 
the Sierpinski gasket (b = 2). Mj [j = 1, 2, 3] are matrices mapping the set of voltage drops at one 
level to the set of voltage drops at the next level. (b) Tree structure for a three-scale Cantor set. 
mj [j = 1, 2, 3] are scalars that allow an easy determination of the number of intervals of equal size 
at a given level. 

each  assoc ia ted  with  a cer ta in  rou te  j = ( J l ,  • • • , J , )  t h rough  the t ree .  In  (8) ,  

N = N ( n )  = [N(1)]  n is the  n u m b e r  of  s tep  sizes at  level  n. The  d e g e n e r a c y  of  

these  exponen t s ,  i . e . ,  the  dens i ty  W ( E ) d E  of  exponen t s  E b e t w e e n  E and 

E + d E ,  also scales accord ing  to an e x p o n e n t  S ( E ) ,  

W ( E )  ~ N s(E) , (9)  

which is d e t e r m i n e d  by the  b inomia l  d i s t r ibu t ion  [8]. D u e  to the  fo rmal  

s imi lar i ty  to t h e r m o d y n a m i c s ,  we s p e a k  of  the  t hermodynamica l  f o r m a l i s m ,  

and  call  E and  S ( E )  the  ene rgy  and  e n t r o p y ,  respec t ive ly .  The  po in t  at the  end  

of  a rou te ,  i .e . ,  a po in t  of  the  C a n t o r  set is ca l led  a s ta te ,  and  the  f ree  ene rgy  is 

def ined  as the  L e g e n d r e  t r a n s f o r m e d  to the  e n t r o p y ,  

F(/3)  = / 3 E  - S ( E ) ,  (10a) 

whe re  

/3 = S ' ( E )  , ( lOb)  

o r  equ iva len t ly ,  as the  scal ing e x p o n e n t  r e l a t ed  to the  pa r t i t i on  func t ion ,  

N 
Z ( / 3 )  = ~ A~ oc N -r(t~) " (11) 

j = l  

A g a i n  F ( 0 ) = - 1 ,  no rma l i z ing  the  m a x i m u m  e n t r o p y  to Sma x = 1. F r o m  eqs.  

(10) and  (11) we not ice  tha t  the  b o u n d s  on  the ene rgy  Emi n ~< E ~< Ema x are  

given by  the  s lopes  of  the  f ree  energy  in the  in f in i te /3  l imits  (/3--> + ~ )  which  
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on the other hand are determined by the largest 
smallest (Ami n = mini{m j}) scaling factors, 

and 

( ~ m a x  ~- max~{mj}) and 

and 

- I n  /~min (12b) 
g m a x  - In N(1) 

The thermodynamical formalism for d v = 1 can be generalized for our d v = 2 

structures. However, due to the fact that matrices in general do not commute, 
the entropy term can not be straightforwardly calculated. The number of step 
sizes at the first level is N(1) = N b and the step sizes are taken to be the lengths 
A of the voltage drop vectors V= (V 1, V2) according to some natural norm d k, 

zl = dk (V  ) ---- ([Val k + [v2lk) 1/k (13) 

(1 ~< k<~oo), where k = 1 is the (absolute) sum and k = oo is the (absolute) 
maximum norm. Since the scaling properties are associated solely with the 

matrices, the thermodynamical  funct ions  do not  depend  on the norm chosen.  In 
appendix A, we show that this is indeed the case for all positive k. In 
particular, since F(/3) is determined by d~, we conclude that 

F(/3) = F(/3) (14) 

for all posit ive values of /3  (and obviously also for /3 = 0); and F(/3) can be 
determined using solely, say, the maximum norm d~. 

In the infinite/3 limits the energies (i.e. the slopes of F(/3)) are determined 
by the largest ( ~ m a x )  and the smallest (/~min) eigenvalue, 

-In/~max - I n  Ami n 
- -  - -  ~ < E ~ < E m a x  - (15) 

E m i n  In N b In N b ' 

corresponding to the smallest and largest scaling factor in the one-dimensional 
case. For the b = 2 Sierpinski gasket the eigenvalues a r e  Ami n = 1 and Ama x = 5 3- 

from (7). Hence from (15), 

In 5 
Emax = In---3 ----- 1.465 (16a) 

E m i  n = E m a  x - 1 = 0.465, (16b) 

which therefore are the slopes of F(/3) obtained for large negative and positive 
moments. 

- I n  Ama x 

EmiR - -  In N(1) (12a) 
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3. Negative moments 

Since F(/3) describes the scaling properties, it is independent of initial 
conditions. In contrast, we saw in the introduction that J~(/3) for negative/3 can 
be very sensitive to initial conditions due to the occurrence of extremely small 
voltage drops. At a given level of construction, an entire set of initial 
conditions exists for which/3(/3) changes drastically. However ,  as we will show 
below, even if these initial conditions are not considered, F(/3) differs from 
F(fl)  due to a general mixing of entropy. 

In fig. 6a the two free energies are shown for the Sierpinski gasket. The most 
striking difference is the finite entropy S(Emax)> S(Emax)= 0 obtained in the 
/3 - -+ -~  limit [S(E) being the Legendre transformed of F(/3)]. We determine 
S(Emax) to be in accordance with the approximate value S(Emax) = 
In 1.609/In 3 = 0.433 found by Roux and Mitescu [9]. 

To understand the origin of this finite entropy we need the result that any 
pseudonorm d k for k negative gives the same free energy curve. This is shown 
in appendix A. For convenience we use the (absolute) minimum norm d_~. 
Now, the entropy mixing is a result of the circumstance that although the 
length A of a voltage drop vector is associated with an energy E, the minimum 
norm will add it to a higher energy state if one of its coordinates are small 
compared to A. To calculate this mixing we assume that the phases 0 of the 
voltage drop vectors have a normalized distribution gE(O), which is bounded 
and nonzero at almost all phases and energies in the thermodynamic limit. For 
the Sierpinski gasket this assumption seems to be fulfilled, as it appears from 
figs. 7a, b which show the density gE(O)?C'(E)dO dE at levels 7 and 8. Fig. 7c 
shows the average distribution g(O) obtained from figs. 7a, b. Indeed,  g(O) 
seems to converge as the level increases. 

Based on the assumption above, at an energy E the distance between the 
vector tips is 

6 (E)  ~ N -[s(E)+EI . (17) 

The entropy contribution to a higher energy state given by a scaling 
A(E) ~ N -e, E >- E,, is therefore 

N ~(e' ~') ~ A(E) /8 (E)  ~ N [s(~)+~-el . (18) 

The total contribution from lower energy states is 

NS(E)~ ~, N ~(E, ~)~ ~, N Is~>~-e l  " 
E~E E~E 

(19) 
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i.00 

Fig. 6. (a) The two free energies F(/3) [from eq. (I)] and F(/3) [using d~ in eq. (11)] 
characterizing the Sierpinski gasket, determined from the 7th and 8th level of construction. The 
two thermodynamical functions separate significantly for /3 < - 1 .  (b) Derivatives of F(/3) and 
/3(fl). A substantial decrease in slope is observed for/3(/3) at/3 -- -1 .  
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Fig. 7. Phase distribution of the voltage vectors for the Sierpinski gasket for V = 0.5 at (a) level 6 
(36 points) and (b) level 7 (37 points). The radial axis is logarithmic, i.e., an energy axis. Only the 
vector tips are shown, which falls between Em~.=0.465 and Emax=l.465 [from (16)]. (c) 
Normalized average distribution g(O) of phases of the voltage drop vectors for level 6 (Fq) and level 
7 (A).  The vector indicates the center of gravity. (d) Entropy contribution S(E, /~)  to higher 
energy states, which leads to the development of a phase transition. For /~= E ' <  E_ 1 the 
dominant contribution to S(E ' )  comes from E ' ;  for/~ = E " >  E 1 the dominant contribution comes 
from E 1. 
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Fig. 7 (cont.). 

Now, the maximal value of S(E, /~)  is given by the value of /~ for which 
S(/~) + /~  is maximal which happens when S'(/~) = - 1 .  Denoting this value of 
/~ by E 1 yields (see fig. 7d) 

~ ( E )  = ~ [ F ( - 1 ) l  - E ,  if E I> E_I ,  
[ S ( E ) ,  if E ~ E _ I  , (20) 
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where eqs. (10a, b) have been used. For the Sierpinski gasket we obtain 
IF(-  1)1 = 1.900, giving S(E max) = 0.435 in extremely good agreement with the 
value found directly. 

We want to add two comments to eq. (20). First, we stress that F(/3) is 
determined solely by use of the minimum norm, and seems to become identical 
to F(/3) (determined solely by use of the maximum norm) at /3 = - 1  giving 
occasion to a phase transition. We point out, however, that a real bump in the 
free energy is hard to achieve due to finite level effects (even in one 
dimensional systems). However, as is shown in fig. 6b, the derivative of/~(/3) 
changes drastically from its maximal value Ema x at /3 = -1 .  A second point is 
that the bounded phase distribution assumption has no natural break-down at 
E = E . . . .  but first at E =  IF(-1)l  where S(E) becomes zero. Nonetheless, 
level to level correlations become important when E = E m a  x since even a very 
small voltage drop at most can scale from level to level by a factor of Ami ". 

Finally, we point out that in general an order parameter 0 <- r E ~< 1 is defined 
N by ree E = (Ej=IA~-IVj)/Z(/3),  where E is related to/3 through eqs. (10a, b) as 

the derivative of the free energy F(/3). Hence, a uniform (totally disordered) 
distribution gE(O) has r E = 0, and a peak (totally ordered) distribution has 
r E = 1. Also, reeE/2~r denotes the "center of gravity" of the distribution curve 
gE(O). In particular, since almost all points have energies corresponding to 
/3 = 0, the vector reee/2~ obtained for/3 = 0 represents the center of gravity of 
the distribution curve g(O) in the thermodynamical limit N---~ ~ (see fig. 7c). 

4. Transfer matrices 

The scaling exponents for even positive moments can be calculated from the 
matrix representation by use of a transfer matrix technique. The idea is to use 
that the sum V~ k + V~ k is a product of sum of squares, 

k 

V~ k + V~ k = I~ ( V ~ -  epV22), (21) 
p = l  

where Ep are the roots of yk + 1 = 0. Every term on the right hand side of eq. 
(21) can be written 

V1 ) ,  (22a) 
(V 1Vz)a(p~,)0 ( V2 

where 

A ( k ) = ( 1  0 ) (22b) 
p,0 0 - %  " 
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Now, to calculate a moment Z,(2m) at level n we use a 2k-norm where k 
divides m. Defining in general A (m) = A(k) 1 ~ (p  mod k) ~< k, yields p,0 ~X(p mod k), 0, 

Z.(2m)= fi [(1 V)A(,")(1)], 
p=l 

(23) 

where the matrices A (m) (m) 1,n,""",  Am,, are defined recursively by 

Ub 
f l  I(V1 V2)A(m)(VI)] = ~ f i  [(V1 V2){M~A(~)~-1Mj}(VI) ] , 
p=l j=l p=l 

(24) 

¢ 
M r denoting the adjoint of Mj. The derivation of eq. (23) is carried out in 
appendix B. 

In order to reduce the complexity we point out that eq. (24) is an identity for 
polynomials of degree 2m, and therefore actually consists of exactly 2m + 1 
equations, one for each coefficient. This means that we are free to choose, for 
instance, all A~p.", ) to have zero off-diagonal elements, except for A(m)I,. having 
one nonzero off-diagonal element. Hence 

(a(m) a(m) 
"" o0,n " ' p , l , n~  

A~p, '~)= /~(m) ] '  
p ,2,. / 

(25a) 

where 

~(m) = 0 [p I> 21 (25b) p,l ,n  

v2-l|7l in the pth term on the left side of eq. Thus, /~(m) is the coefficient of --1 --2 p,l,n 

-(') the transfer v2m-qvq in eq. (24) by %,,,  (24). Denoting the coefficient to --1 --2 
matrix T (m) _(m) = {Uq,#~ is defined by 

2m 
C(m)= ~ _(m).(rn)  (26) 

q,n ~ q,~t" ~ ,n-1  • 
0=0 

In appendix B we show that T (m) is well defined, and given by 

~(m) ~ ~ f i  h(') (27) 
j=l i l+" '+im=q p=l ~ip,lp 

Here { l l , "  • • , Ira} is an arbitrary representative of l indices with sum 4 and 
with lp # 1 for p >/2, and 
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% 

b o) MJ) bO)\ 0,0 u0,1 0,2 / 

= b(J) b(J) b o) 1,0 1,1 1,2] 

b o) b o) b(/) \ 2,0 2,1 2,2/ 

m(J)2 ~( j ) . . . ( j )  .~.(j)2 
0,0 ¢rLO,Orrt 1,0 tct 1,0 

. . .(J).-(J) ~ ( J ) ~ ( J )  ~._ ~ ( J ) ~ ( J )  o ~ ( J ) ~ ( J )  ffto,offgo, 1 ffto,off~l, 1 ,,~0,1,,~1,0 ~fftl,Offgl, 1 

Dr(J)2 (J)__(J) m(J)2 o,1 mo,lrrtl,1 1,1 

where 

/ m  o) mO)\  

re(J) 1,1/ \ 1,o m(J) " 

Note that Bj depends solely on Mj. 
The transfer matrix T (m) allows us to rewrite eq. (23), 

(28a) 

(28b) 

C m) \ 

O,n I 
z . ( 2 m ) = ( 1  v . . .  v 2m) : 

~ C (m) ] \ 2m,n/ 

c(m) ) 
o,o 

= (1 V . . . v z m ) T  (m)n " . 

C (m) 2m,O/ 

(29) 

The free energy F(2m) is given by the largest eigenvalues A (m) of T ("), 

In A (m) 
F(Zm) - In N b (30) 

Previous studies [1, 9] have concerned the 2m-norm, however our analysis 
works for any 2k-norm, where k is a divisor of m, since only the initial matrices 
A (m) p,o are changed. For the usual length norm (k = 1) all initial matrices equal 
the identity matrix I, and _(m) ,, [_(m) %q,0 = ( q ) ~%q + 1,0 is always zero)• Before we show 
some examples of the transfer matrix technique in practice, we comment  on 
the odd moments• Using, say, the 2-norm, we see that for the first moment  the 
products in eq. (24) are replaced by square roots; to get rid of them we must 
accept mixing of the (n - 1) terms with the n term. However, the main reason 
that general methods do not work is the occurrence o f  sign shifts. To this end we 
stress that a sign convention which puts all voltage drops positive on the 
generator creates negative voltage drops on higher levels• If all voltage drops 
were positive, we could write for the first moment  
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Z(1) = ~ (V/, 1 + E,2) -~" £ (1 1)k ~ '2)  
i=1  i=1 , 

E £ ( 1  1)Mj V] 2 
i=1 / = i  

(1 1) Mj V/2 . 
i=1 

(31) 

Hence, an appropriate transfer matrix would be the sum of the matrices. For 
the Sierpinski gasket this sum is a diagonal matrix with eigenvalue A -- 6, which 
gives F(1) = - l n  6/ln 3 = -0.166. This is in disagreement with the actual value 
F(1) = - 0 . 2 2 4 ,  which emphasizes that the occurrence of sign shifts has im- 
portance. 

To show how the transfer matrix analysis above works, we go through the 
two cases/3 = 2 and/3 = 4 for the Sierpinski gasket. We mention, however, that 
F(2) can be found more easily for the hierarchy of Sierpinski gasket fractals 
knowing that the maximal voltage drop, Vma x actually is found at one (or both) 
of the lower corners, where also practically all current J go through, i.e. 
Vmax~ J. Since Vmax ~ N  -Emin and J ~  Z(2) we get 

e ( 2 )  = e m i  n . ( 3 2 )  

For the Sierpinski gasket we obtain from eq. (16b) the result F (2 )=  
( l n 5 / l n 3 ) - 1 .  The direct relation, eq. (3), to the spectral dimension, d s --- 
2/(F(2) + 1), reproduces the result (2a). 

In order to calculate F(2) using the transfer matrix method and to calculate 
F(2rn) in general, we must first find the Bj. From eqs. (7) and (28) we obtain 

ti 1 i) B I = I . .  3 - , (33a) 

0 

(i2i) B2 = 1.. 5 (33b) 
2 

and 1(9 0!) 
B 3--- ~ - 6  3 . (33c) 

1 - 1  

From eq. (27), T (1) is found to be the sum of these matrices, 
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(141 
j=l 2 1 1 4  

(34) 

In general, inversion symmetry splits the eigenvalue problem, adding in the 
characteristic determinant d e t ( T - / x I )  for q ~ m the qth row to the ( 2 m -  
q)th row and then subtract the ( 2 m -  q) column from the qth. Hence the 
eigenvalue problem for T ~) splits into the eigenvalue ju, 1 = ~5 2 and the eigen- 
values of 

25 

which are P~2 = 2~ and/x 3 = 3. The largest, eigenvalue A ~1~ = / z  3 = 3, determines 
the behavior of Z(2) in the thermodynamic limit and gives the predicted free 
energy by eq. (30). 

For /3 = 4, i.e. for m = 2, the transfer matrix has five rows and columns. 
From eqs. (27) and (33) we find 

T(2) = 1 
625 

98 7 5 1 2 / 
- 7 6  58 14 22 - 4  

J 78 78 3 51 3 
- 4  22 14 58 - 7 6  

2 1 5 7 98 

(36) 

Utilizing the inversion symmetry, the eigenvalues are identified as the eigen- 
values to the matrices 

96 66) 
625 - 7 2  

(37a) 

and 

= 28 , (37b) 
625 10 8 

which are ~ = 6 (11-V ' -~) /625  and ~2 = 6(11 + V ' ~ ) / 6 2 5 f o r  ~2~, and ~3 = 
~1, ~4 = ~z, and ~5 = 99/625 for ~2) .  The largest, A~2) = ~ = 99/625, gives 
the free energy, 

In ~(2) _ 1n(625/99) _ 1.677, (38) 
F(4) - In 3 In 3 

in accordance with previous results [2, 9] and our numerical results (see fig. lc  
or fig. 6a). 



5. Crossover from fractal to lattice 

o 
eq 

We now turn our  a t tent ion to the large b limit. Since the n u m b e r  of  triangles 
increases quadrat ical ly in b, we expect  tha t  a l ready at an early stage the free 

energy  will be well approx imated  f rom the vol tage distr ibution obta ined  at the 
first level ( the generator) .  F r o m  earlier studies on  the dc resistance [6], we 

know how F(2)  behaves .  Accord ing  to eq. (32) exactly the same behav ior  is 

ob ta ined  for  the slope in the large posi t ive/3 limit. T h e n  knowing  that  F(2)  and 

Emi n converge  to zero  (in the same way as d s converges  to two,  see eq. (2b)), 
F( /3)  must  converge  to zero  for  all/3 I> 2. H o w e v e r ,  the convergence  is slow as 

is observed  in fig. 8 where  we show the free energy  for  b = 20, 40, 60, 80 for  
which eq. (6) is known  to be very  accurate.  Mot iva ted  by the identical scaling 

behavior  for  /3 = 2 (and /3 = oo), we c om pa re  the m o m e n t s  ob ta ined  for the 

hierarchy of  Sierpinski gasket  fractals in the large b limit with the momen t s  

ob ta ined  in the case where  all lef t- leaned resistors are taken  to be zero.  In  the 
latter si tuation the p rob lem reduces  ( taking V =  1) to a s tudy of  a multiscale 

Can to r  set. For  every  i = 1 , . . . ,  b there  are i scaling factors  A i with value 

. - 1  1 
A i - -  b - 1  " (39) 
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Fig. 8. Free energy F(/3) obtained from the voltage distribution on the generator for the hierarchy 
of Sierpinski gasket fractal networks. The top curve has b = 20, and remaining curves are for 
b = 40, 60, 80 (all using the norm d~). As b increases, E~,in decreases, and Ema ~ increases. 
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(On the generator, see fig. 3b, V/=Ai(~) . )  Therefore,  Z , ( f l ) ~ a ( / 3 ) "  [8], 
where 

b b 1 - , 8  

a(/3) = E pa - r  =lv b -1 ' 8 .  (40) 
p=i (gp= lp  ) 

We notice that in the large b limit, eq. (40) yields 

~ l f l  b2-'8(ln b)-'8 
} 

a(f l )  = / ( l n  b )  -1  , 

~I(/3 - 1)(In b) -t~ , 

if / 3 < 2 ,  

if / 3 = 2 ,  
if / 3 > 2 .  

(41) 

In eq. (41) if(x) is the Riemann zeta function. Hence,  as b - - ) ~  the free energy 
displays a phase transition at /3 = 2, 

l n A ( / 3 ) _ ~ ½ / 3 - 1 ,  if / 3 < 2 ,  
F(  /3 ) - In N b ~ 0 ,  if /3/> 2 ,  (42) 

which expresses the fact that the dominating voltage drops change abruptly at 
/3 = 2 from being the minimal nonzero voltage drops to being the maximal 
voltage drops. 

Regarding the first level approximation we find the partition function for the 
"zero-resistor" gaskets at the first level to be 

Z 1 (/3) = 2'8/ka(/3). (43) 

Here,  k refers to the norm used, so eq. (43) shows that the first level 
approximation is limited to k ~>/3, which include the /3 norm as well as the 
maximum norm (k = ¢¢). In any case, to avoid uninteresting prefactors in the 
comparison, we study the b dependence at fixed/3 values. To be more precise 
we have for several/3 values (0 ~</3 ~< 5) plotted ln[(Z b = 1P 1-'8 ) / Z  1 (/3 )] versus 
ln(ln b) for the hierarchy of Sierpinski gasket fractal networks (see fig. 9a). For 
every/3 value, a slope s ( /3 )  is determined from a least square fit. Fig. 9b shows 
s ( f l ) ,  where the diagonal ( s ( / 3 ) = / 3 )  constitutes the "zero-resistor" gasket 
behavior. It is noticed that the disagreement is largest at /3 = 2. Nonetheless, 
the infinite b behavior is actually known to be identical for /3 = 2. For the b 
values used here Milo~evi6 et al. [6] showed that eq. (6) is valid to a high 
accuracy. In contrast, the "zero-resistor" gasket dc resistance, 

b 

R~ °) = E p - 1  = In b + c ,  ( 4 4 )  
p=l  
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Fig. 9. (a) ln[(Ebp=lpl-~)/Zl(fl)] vs. In(In b) for the hierarchy of Sierpinski gasket fractal 
networks with b = 20, 30, 40, 50, 60, 70, where Z1(/3 ) denotes the partition function for the 
generator (level 1). (b) Slopes s(3) obtained in the way illustrated by (a), using least square fits. 
The diagonal, representing the "zero-resistor" gasket behavior, is shown as a dashed line. 
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has the  co r rec t ion  c = 0 . 5 7 7 2 . . .  ( E u l e r ' s  cons t an t ) ,  which even  for  large  b 

va lues  has a c lear  effect  on  the  second  m o m e n t  dec reas ing  the  va lue  of  s(2)  

f rom its va lue  at infini te  b. 

F r o m  the cons ide ra t ions  a b o v e  we con j ec tu r e  tha t  F ( /3 )  is g iven by  eq.  (42) 

in the  infinite b l imit .  Neve r the l e s s ,  to b e t t e r  u n d e r s t a n d  this con j ec tu r e ,  let  us 

set  all l e f t - l eaned  res is tors  equa l  to a cer ta in  va lue  r (fig. 3a). H e n c e ,  r = 1 

c o r r e s p o n d s  to the  n o r m a l  h i e r a rchy  of  S ie rp insk i  gaske t  f rac ta l  n e t w o r k s  whi le  

r = 0 c o r r e s p o n d s  to the  " z e r o - r e s i s t o r "  gaskets .  F o r  r ~ 0 ,  1 the  str ict  self- 

s imi lar  t r ee  s t ruc ture  is no  m o r e  p r e s e r v e d  for  a finite level  gaske t .  The  

mat r ices  d e p e n d  on r, and  this d e p e n d e n c e  changes  f rom level  to level .  These  

changes  h a p p e n ,  h o w e v e r ,  in a con t ro l l ab l e  way,  which by r e n o r m a l i z a t i o n  can 

be  pu t  in to  a func t ion  fb (r ) ;  this  is i l lus t ra ted  for  the  S ie rp insk i  gaske t  in fig. 

10a. Thus  the  t h e r m o d y n a m i c a l  b e h a v i o r  is g o v e r n e d  by  the  fixed po in t s  of  fb ,  

1 1 

I1 

~ (r) 
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b 

0q. 
o 

( 9  
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r 

Fig. 10. (a) Renormalization functionf2(r ) for theSierpinski gasket network, defined as shown. In 
general, R determines the dc resistivity exponent ~. (b) Renormalization functions fb(r) for various 
b values. It is observed that fb(r) only has two fixed points, the unstable fixed point r = 0, and the 
stable fixed point r = 1. From right to left: b = 2, 4, 30, 70,200. The diagonal is shown as a dashed 
line. 
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which r = 0 and r = 1 are known to be among.  For  the Sierpinski gasket we find 

2r(3r  + 2) (45) 
f 2 ( r ) -  r 2 + 6 r + 3  ' 

which is shown in fig. 10b. This function has only the two ment ioned fixed 
points r = 0 and r = 1. Fur thermore ,  while r = 1 is a stable fixed point,  r = 0 is 
not. This means  that f o r  all r ~ 0 the thermodynamical  funct ions  are identical to 

the normal  r = 1 functions.  

To see the behavior  for larger values of  b we have numerically determined 
fb(r) ,  see fig. 10b. We find that r = 1 always is a stable fixed point,  r = 0 always 
is unstable,  and no other  fixed points exist. In the limit b ~ ~ fig. 10b suggests 
that f~(r)  = 1 for all values of  r > 0. In this limit the thermodynamics  is given 
by the first level; therefore,  taking the limit r - +  0 leads to the conclusion that 
the thermodynamical  functions must  be identical for all r. Finally, regarding 
the negative moments ,  the same thermodynamic  analysis for all r values 
implies that the minimal voltage drop for r > 0 decays exponentially in b, i.e., 
Ema x approaches infinity when b does. We have, however,  not been able to 
show this. 

6. Discussion and conclusions 

In this paper ,  we have presented a matrix formalism for fractal resistor 
networks which allows more  information on the voltage distribution than 
previously achieved. To characterize the voltage distribution the ther- 
modynamical  formalism is applied, which separates the set of voltage drops 
into subsets, each characterized by its own exponents.  However ,  in order  to 
obtain maximal information the thermodynamical  formalism has to be applied 
in a sufficiently high dimension dr ,  which means that close voltage drops are 
connected in an appropr ia te  way to form a vector. The projection onto the 
one-dimensional  system of voltage drops gives rise to a phase transition at 
/3 = - 1 ,  corresponding to the first negative moment .  While the projection 
above this value of /3,  and in particular for all positive moments ,  produces the 
correct thermodynamics,  no information aside f rom the minimal scaling factor 

Ami n can be extracted at /3 values below - 1 .  Fur thermore ,  numerically even 
)train c a n  be difficult to determine.  

We have here t reated the Sierpinski gasket hierarchy of fractal networks,  
where d v -- 2. The voltage distributions can be extracted f rom a tree structure 
based on a finite number  of matrices. For  the Sierpinski gasket in particular, 
we have determined the appropr ia te  matrices,  which immediately give the 
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extreme scaling factors. We have also shown that the finite entropy obtained 
for the one-dimensional distribution at large negative moments  is due to the 
phase transition occurring a t /3  = - 1 .  

The matrix representat ion also gives occasion for a natural definition of 
transfer matrices T (m) for the even positive 2m moments .  For  the hierarchy of 
Sierpinski gasket fractal networks we have deduced a finite expression for T (m) 

which is a 2m + 1 square matrix, and illustrated the technique on the normal  
Sierpinski gasket for m = 1 and m = 2. 

Also, we have considered the fractal to lattice crossover as b---~oo. To this 
end we have discussed the resistor networks obtained when all left-leaned 
resistors have resistance r. To determine the thermodynamics  for r ~ 0, 1 a 
renormalization function has been introduced, which renormalizes the value of 
r f rom one level of construction to the preceding one. We have shown, 
analytically for the Sierpinski gasket, and numerically otherwise, that this 
function has only two fixed points: r = 0 which is unstable, and r = 1 which is 
stable. We conclude that the thermodynamics  for all r ~ 0 gaskets coincide with 
that found for r = 1. In the lattice limit the renormalization function ap- 
proaches unity for all positive r, and within our numerical accuracy we find that 
r = 1 and r = 0 reveal the same thermodynamics.  At  this point the free energy 
(which for r -- 0 can be calculated analytically) has a first order phase transition 
at the second moment ,  where the energy characterizing the set of dominating 
voltage drops abruptly changes. We here point out that a rigorous proof  of the 
conjecture that all " r - res is tor"  gaskets have the same thermodynamics  in the 
lattice limit might be obtained through Fourier analysis [7]. From such an 
analysis analytical expressions for the extreme scaling factors should also 
emerge.  

It  should be interesting to apply the formalism presented here to the classic 
random resistor network problem and to relate the percolation problem to the 
study of products of random matrices. In particular, a sharp knee at/3 = - 0 . 5  
has been observed in the free energy for a square-lattice random resistor 
network [2]. To this end we point out that the phase transition obtained at 
/3 = - 1 moves toward/3 = 0 when the number  of vectors along coordinate axes 
are more  dense than the bounded phase distribution assumption implies (in 
contrast hereto,  the position of the phase transition does not directly depend 
on dr) .  As a related subject where new information could be gained, we 
mention that growth phenomena  such as diffusion-limited aggregation can be 
regarded as a problem for a superconducting cluster inside a normal resistor 
network [10]. In this analogy the voltage drops correspond to the gradients of 
the associated field, and matrices can be introduced through renormalization.  
Also here the behavior  of negative moments  has been hard to analyze. 

Finally, we emphasize that our new f ramework  for studying resistor net- 
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works has great similarity with the framework on which strange attractors (or 
repellors) of nonlinear dynamical systems are studied. The appropriate tree 
structure is there naturally defined by the dynamics, and accordingly the 
attractor must be embedded in a sufficiently high dimension to reproduce the 
correct thermodynamics. 
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Appendix A 

Independence  o f  n o r m  on thermodynamics  

We want here to show that the free energies 

Fk([3 ) =-- -- lira In 2~y=1 dk(Vj)~ 
N---~ ~ In N ' (A.1) 

only depend on the sign of k, 

~F_~(/3) ,  if k < 0 ,  
Fk([3) = [F=([3) = F ( [ 3 ) ,  if k > 0 .  (A.2) 

Here, d k is defined by (13). For 0 < k < 1 and k negative, d k is strictly speaking 
not a norm since Minkowski's inequality [dk(U + V ) < - d k ( U  ) + dk(V)] does 
not hold. 

The proof of (A.2) is based on the following inequalities valid for a, b 
positive and a between 0 and 1, 

(a + b) ~ ~< a ~ + b e ~<2(a + b) ~ . (A.3) 

Putting a = [VII k, b = [Vz[ k, and a = l / k  yields 

d k ( V )  t ~ d,(V) t ~< 2 d k ( V )  t [0 < t / k  <<- 11, (A.4) 
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with V = (V1, V2). For the partition functions the inequalities (A.4) give for [3/I 
positive 

N N N N 

2 -t3/l Z dl(Vj) t3 <~ Z dk(Vy) ~ <~ Z dI(Vj) t3 <~ 2 t~/I Z dk(Vj) t~ , 
j = l  j = l  j = l  j = l  

(A.5) 

with 0 < l /k  ~< 1. For [3/l negative, the inequalities are reversed. Since prefac- 
tors do not contribute to the free energy [see (A.1)], it follows that Fk([3 ) = 
Ft(/3 ) for any l /k  between 0 and 1. This concludes the proof of eq. (A.2). 

Appendix B 

Evaluation o f  the transfer matrix 

Based on the definition of A(p"~ in section 4, we here deduce eq. (23). 
Moreover,  we prove that the transfer matrix T (m) is well defined by eq. (26) 
and derive the expression, eq. (27), for its elements. 

The partition function Zn(2m ) at level n is by definition 

Ng Ng N~ 

Z,,(Zm) = Z A~ m ~-- Z [d2k(Vi)] 2m = ~ ( V i  2k 3¢ Vi2,k2) m/k " ( B . 1 )  

i = l  i=1 i = l  

When k divides m, eqs. (21) and (22) give 

Zn(2m ) = ~ '  f l  (Vi,~ ,i,2)Ap,o 
i = l  p = l  V/,2 J J  " 

(B.2) 

Now, uniting at level n the terms originating from the same step at level n - 1 
yields 

Z,,(2m) = • ~] f l  (V~ A V~,z)(MiAe,oM j} V/2 
i=1 j = l  p = l  

= Z (Vi,1 V~,zlA(pm~ , 
i=1 p = l  

(B.3) 

where the last equation comes from the definition, eq. (24). Eq. (23) follows, 
repeating this procedure n times. 

Inserting eq. (25) into eq. (24), we find the coefficients on the left side of eq. 
(24), 
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c(m)= 2 I~ A (;~p,. (B.4) q,n 
ll+...+lm=q p=l 

To evaluate the right side of eq. (24) we first determine the coefficient ~(j,m) p,i,n--1 
to --1vz-itzi-2 in the term given by j and p on the right side of eq. (24). This is a 
linear function of the A (m) p,l,n-- l ' 

2 
~(j,rn) =- 2 b(J)A(m) (B.5) p,i,n 1 i,l p,l,n-1 , 

l=0 

with (/) {bi, t } given by eq. (28). From the right side of eq. (24) we now get 

Nb 

~(m)= Z Z f i  ~(j,m) t" q,n p,ip,n-1 
j=l il+"'+im=q p=l 

Nb 2 

~ - - Z  Z f i ( l ~ O  b(j)l~(m) ip,I p,l,n--1 
j=l il+'"+im=qp=l -- 

Nb 2m 
=Y Z Z Z 

j=l il+'"+im=q t~=0 ll+"*+lm= ~ 
b( j ,  ~ ~,m) ~] ip,lp fl _. p ,9 ,n-1/  J 

2m i (  ~ (pi~i 1 = Z Z Z f i  b(], ] /~(m) ']] (B.6) 
~=0 ll+"'+lm=Ct L']=I il+"'+im=q p=l ip,lp] _ p,lp,n-1/I 3 " 

Moving the sum over the i indices with sum q inside, the prefactor to the 
nonzero products of the /~(m) only depends on the l indices through ~. p,lp,n-1 
Thus, eq. (B.6) can be written 

_(m) = 2 2 b A(m) ] ] (B.7) Cq,n , p,lp,n 1] J '  
~=0 - il+"'+im=q p=l ll +.. lm= ~ 

which by eq. (B.4) is equivalent to eqs. (26) and (27). 
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