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We directly measure the fractal dimension D4 of the accessible perimeter for diffusion-limited
aggregation. We find D4 =D, where D is the fractal dimension. Moreover, the number of inac-
cessible sites also scales as the mass of the entire aggregate, stabilizing at 36-37% of the total
perimeter after a short transient. Hence, the well-known anomalies in the multifractal analysis of
the growth probability distribution are not a result of the possibility D4 < D.

Since its introduction in 1981 as a computer algo-
rithm,' diffusion-limited aggregation has been used to de-
scribe the common features of a vast set of seemingly un-
related phenomena (such as electrodeposition, dendritic
growth, and dielectric breakdown). A great deal of work
has been devoted to understanding its theoretical proper-
ties and fitting them into a coherent framework, but pro-
gress has been slow and complete success has not been
achieved.

The algorithm itself is very simple. It consists of releas-
ing particles one at a time from far away and letting them
execute a random work until they first touch a cluster site,
stick to it permanently, and become part of the growing
cluster."'?2 It generates highly ramified, tenuous, low-
density figures that have been found to closely match a
range of experimental observed structures’~’ (see Fig. 1).
The empty areas never get filled in, due to the strong
screening effects exerted by the outer branches of the
structure on the inner parts. The most interesting proper-
ty of diffusion-limited aggregation (DLA) clusters is self-
similarity: The aggregates are fractals, whose total mass
M scales with the radius of gyration R as

M~R?, 1)

and D, the fractal dimension, is roughly 1.7 in two dimen-
sions. A great deal is known about the fractal and mul-
tifractal properties of DLA clusters.®

Another interesting aspect is the growth site probability
distribution {p,-},- e s. Here p; in the probability that site i
belonging to the perimeter S of the aggregate will grow at
the next time step. This distribution has been found to
hagemmultifractal behavior. The exponent 7(g) defined
by

2 pi~R™™@ Q)

i'€s
does not depend on g in a linear fashion. The sum in (2)
runs over all of the perimeter sites i.

40

The multifractal property is not easily delineated, since
the strong screening effect mentioned before implies that
the sites at the perimeter of the inner branches have a very
small probability of growing. Unfortunately, the small
probabilities are crucial in determining multifractality,
and are the most difficult to measure with the necessary
accuracy.

If g— 0 in (2), all the growth sites with p; =0 will have
the same weight; in other words, — z(0) can be viewed as
the fractal dimension of the ‘““active” portion of the perim-
eter of the cluster, which we will call the accessible perim-
eter. In analogy with (1) we write

M4 ~R", (3)
. ) -
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FIG. 1. A DLA cluster studied in this work, with 100000
particles.
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where M, is the number of perimeter sites that have
growth probability different from zero; we may write, for-
mally,

Mys=X 1.

i€S

pi=0
In a practical simulation, an apparent growth probability
pi of zero might be a consequence of numerical inadequa-
cy or it might be a real effect (the simplest example being
a perimeter site enclosed by the cluster). Three
groups'' 7!3 have measured the multifractal exponents for
values of g that include ¢ =0. Although using very
different methods, all quote values of

1(0)=—D,4 4)

significantly different from the fractal dimension of the
cluster, D (==1.7). Moreover, their estimates for D4 do
not agree, ranging from 1.4 to 1.62.'' 7!3 Therefore, it is
of interest to measure the perimeter exponent indepen-
dently and check the possibility that the accessible perim-
eter exponent D4 could be different from the bulk ex-
ponent D.

The simulation is carried out as follows. First, we grow
the cluster up to M particles. Then the perimeter of the
cluster is marked and partitioned into accessible and inac-
cessible sites. An accessible site is one that, in principle,
can be reached by a random walk coming from infinity.'*
Therefore, an accessible site is a perimeter site connected
by at least one “on-lattice path” to an open area. Draw-
ing a box that includes the entire cluster without touching
it, and “coloring in” from the boundary of the box, i.e.,
marking in some way every site in the box directly con-
nected to its boundary through a path that did not step on
the cluster or on another perimeter site, we find the acces-
sible perimeter as intersection of the perimeter of the clus-
ter with the “colored” sites. The complement of the ac-
cessible perimeter to the total perimeter is then the inac-
cessible perimeter, and typically it is composed of perime-
ter sites sitting at a corner of the cluster [Fig. 2(a)l, per-
imeter sites obstructed by other perimeter sites [Fig.
2(b)], and perimeter sites enclosed by the cluster [Fig.
2(c)1.

Measurements of the perimeter, its accessible and inac-
cessible part as well as the radius of gyration of the cluster
are taken at this stage. Then the growth resumes, bring-
ing the cluster to a mass M + AM, measurements are tak-
en again, and so on until the cluster reached the predeter-
mined size M .. This procedure was repeated for a large
enough number of clusters to reduce fluctuations by
averaging.

We discuss three runs. In the first two, we use DLA
clusters grown on a square lattice with M, =200 parti-
cles averaging over 3000 configurations (run No. 1), and
with M, =20000 particles averaging over 30 config-
urations (run No. 2). In the third we examine 10 clusters
composed of 100000 particles (run No. 3).

The results are unequivocal: the perimeter, the accessi-
ble perimeter, and the inaccessible perimeter all scale as
the mass of the cluster. Therefore defining Dp and D,
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FIG. 2. Some configurations of very small DLA clusters, with
explicit perimeter analysis. X denotes DLA sites, O denotes ac-
cessible perimeter sites, and @ denotes inaccessible perimeter
sites.

through
Mp~R"r, €))
M;~R", (6)

in analogy with (3) we find
Dp -DA "D] =D . (7)

In our calculations D is found to range from 1.667 for the
smallest clusters to 1.694 for the largest ones. The linear
regression analysis of the log-log plots of S, S,4, and S; vs
N, mass of the cluster, gave an exponent practically equal
to one in any case for runs No. 2 and No. 3 (Table I and
Fig. 3). On the other hand, in run No. 1 Dp/D =0.93,
D4/D=0.81, and D;/D =1.39. Therefore, if we had lim-
ited the analysis to small-size clusters, we could have con-
cluded that D4 D. Thus, the problem with obtaining D4
from a multifractal analysis does not stem from the mea-
sure of the small probabilities, but from the fact that
small clusters have not reached the asymptotic scaling re-
gime. In fact, the ratio
Ni

R= N, (8)
(where WV, and WNVp denote the numbers of inaccessible
and perimeter sites, respectively) follows the pattern
presented in Fig. 4, rising steeply in the beginning and

TABLE 1. The various fractal dimensions considered in this
work for three different simulations. Here D, Dp, D4, and Dy
denote the fractal dimensions of the cluster itself, its total per-
imeter, its accessible perimeter, and it inaccessible perimeter.

Run M max Config. D Dp/D D4/D DD
1 200 3000 1.667 0.928 0.811 1.392
2 20000 30 1.710 1.000 0.995 1.009
3 100000 10 1.694 1.000 1.004 0.995
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FIG. 3. Log-log plot of the perimeter (S), the accessible per-
imeter S4, and the inaccessible perimeter S; vs the mass of the
cluster for run No. 3.

then reaching a plateau around ~ 500 particles.

This explains why the two groups that used small clus-
ters'"'3 found values of D, that were too low. In fact,
comparison of our calculations with multifractal calcula-
tions on small clusters were carried out, and found to be in
remarkably good agreement. The multifractal calcula-
tions were obtained by solving the Laplace equation for
the surface of the cluster considered as an equipotential '°
to get the equilibrium distribution of surface charges (pro-
portional to the growth probabilities), and then calculat-
ing lim,_, o+ 7(q) and using (4) to get D 4.

We found that when we calculated the quantity
{pi}i e s, the distribution split clearly into two regions, one
of which had values of p; significantly smaller than the
resolution of the calculation and hence, presumably corre-
spond to sites with zero growth probability. Their scaling
with R was used to determine D;. Moreover, the number
of total perimeter sites was directly measured.

The agreement between the present calculation and the
multifractal calculations for small clusters is not only lim-
ited to the scaling powers, but extends to the individual
points in graphs such as Fig. 3. This shows that the two
definitions of accessible perimeter—i.e., sites having
pi=0, and sites connected to infinity— do really coincide.

Note that Fig. 4 shows that it is not true that the inac-
cessible sites are a negligible proportion of the perimeter,
destined to become even more negligible as the mass of
the cluster increases. In the range we examined, the equi-
librium value of the ratio & is 36.4%.'® Therefore, at any
given time a significant percentage of the perimeter sites
are inaccessible, or cannot grow. Nevertheless, the mass
of the inaccessible sites scales as the mass of the entire
cluster.

For two-dimensional percolation clusters and invasion

percolation clusters, the fractal dimension D4 of the ac-

cessible perimeter is +.!” The fractal dimension Dy of

the hull'® of the percolation cluster is 3 (Ref. 19) and the
fractal dimension of the total perimeter Dp is 2 (Ref.
20). The observation of different fractal dimensions asso-
ciated with the surfaces of percolation clusters provided
an additional motivation for the work described in this pa-

per. In general,
Dp=Dy=D,, ()]

while for DLA all three surfaces have the same fractal di-
mension.?’ We believe that this fact is connected to the
fact that loops do not occur on all scales in DLA. This is
in contrast to percolation, where one finds loops on all
scales, and hence, there also occur structures in which a
loop is ““almost formed.” A loop that almost forms leads
to a lagoon with a very narrow mouth; the perimeter sites
inside the lagoon belong to the hull but not to the accessi-
ble perimeter, so the hull scales differently than the acces-
sible perimeter for percolation.

To summarize, we have measured the exponents Dp,
D,4, and D, for DLA clusters, and found them to be equal
to the fractal dimension D. Our results also show that the
reason why — 7(0) was observed to be different from D,
lies in the dynamics of the early stages of DLA growth,
and not from problems measuring small growth probabili-
ty. Finally, we determined the equilibrium ratio of inac-
cessible perimeter sites to surface sites to be 0.365 + 0.01
for cluster of mass M ~ 100000.
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