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Abstract

We present a stochastic model of gait rhythm dynamics, based on transitions between di'erent

“neural centers”, that reproduces distinctive statistical properties of normal human walking. By

tuning one model parameter, the transition (hopping) range, the model can describe alterations in

gait dynamics from childhood to adulthood—including a decrease in the correlation and volatil-

ity exponents with maturation. The model also generates time series with multifractal spectra

whose broadness depends only on this parameter. Moreover, we 8nd that the volatility exponent

increases monotonically as a function of the width of the multifractal spectrum, suggesting the

possibility of a change in multifractality with maturation.
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1. Introduction

Many physical and physiological processes exhibit complex @uctuations character-

ized by scaling laws [1–9], some with monofractal [2] and others with multifractal
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behavior 1 [3]. The origin of these complex @uctuations and the factors that contribute

to di'erences in their behavior are largely unknown. Here we develop a physiologi-

cally motivated model that may be helpful in explaining some of the properties that

contribute to complex dynamics. We focus on one class of signals—the time series of

the inter-stride-intervals (ISI) between successive strides in human gait.

Walking is a voluntary process, but under normal circumstances, stride-to-stride regu-

lation of gait is controlled by the nervous system in a largely automatic fashion [10,11].

Gait is regulated in part by “neural centers” within the cortex and the spinal cord [11].

As a result of time-varying inputs, neural activity at di'erent times are thought to be

dominated by di'erent centers, leading to complex @uctuations in the ISI “output”.

Furthermore, as the central nervous system matures from infancy to adulthood, the

interaction between neural centers becomes richer [10].

To understand the underlying regulatory mechanisms of walking, deterministic and

stochastic models have been proposed. For example, classic “central pattern generator”

models are based on oscillatory neural activity, where the interaction between neural

centers helps regulate gait dynamics [12–15]. A stochastic version of a central pattern

generator model reproduces certain fractal properties of the ISI series [4]. However,

existing models do not explain observed changes in scaling exponents [6], and volatility

(magnitude) correlations [16–18] (a new 8nding reported in the present study) that

occur during gait maturation from childhood to adulthood.

We propose a stochastic model consisting of a random walk (RW) on a chain, the

elements of which represent excitable neural centers. 2 A step of the RW between

element i and element j represents the “hopping” of the excitation from center i to

center j. The increase of neural interconnectedness with maturation is modeled by

increasing the range of hopping sizes of the RW, since larger hopping sizes will allow

exploration of more neural centers. This property mimics one aspect of the increasing

complexity of the adult nervous system.

2. Model

Previous studies [19] have identi8ed neural centers with pacemaker-like qualities

that 8re with frequency fi, so we represent the network of neural centers by di'erent

frequency modes. One mode is activated at a given time (ISI˙ 1=fi), and the fi are

Gaussian distributed. The model is based on the following assumptions (Fig. 1):

• Assumption (i) is that the fi have 8nite-size correlations, 〈fifi+�〉=〈f
2
i 〉= e−�=�0 .

We assume 8nite-size correlations among fi because neighboring neurons are likely

1 Series with long-range power-law correlations can be characterized by their second moment (q = 2)

scaling exponent. It is possible to 8nd a set of scaling exponents, 
(q), associated with di'erent moments,

q [22,23]. If d
=dq is constant, the series is monofractal. Otherwise if d
=dq monotonically decreases with

q, the signal is multifractal. The width of the multifractal spectrum is the magnitude of this decrease, i.e.

d
(−∞)=dq− d
(∞)=dq.
2 We model one speci8c type of human locomotion, namely “usual” or “directed” gait. This type of

voluntary, goal-directed activity has a large automatic component and usually tends to minimize variability.
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fi f i+1 fi+2 fi+3 fi+4 fi+5 fi+6 fi+7

Fig. 1. Illustration of the “neural” hopping model. Shown is a sequence of four transitions, from mode fi+4

to fi+7 to fi+3 to fi to fi+2 ... Larger values of the hopping-range parameter C expose more modes along

the chain. The neuronal zone of size �0 = 4 is indicated by the dashed boxes.

to be in@uenced by similar factors [11]. This assumption e'ectively creates “neuronal

zones” composed of neural centers (modes) along the chain with a typical size �0.

• Assumption (ii) concerns the rule followed by the RW process. The active neural

center is determined by the location of the RW. The hopping sizes of the RW follow

a Gaussian distribution of width C.

• Assumption (iii) is that a small fraction of noise is added to the output of each

mode to mimic biological noise not otherwise modeled. The output y becomes y(1+A�)

where A is the noise level and � is Gaussian white noise with zero mean and unit

variance. 3

The model has three parameters �0; C, and A. We 8nd that the best agreement with

the data is achieved when A = 0:02 and �0 = 25. In order to simulate changes with

maturation, we vary only the third parameter, C, as a function of age, C= (age – 2)

for ages 3–25 years. Increasing the hopping range with age is consistent with the fact

that neural transmission is not fully developed until the late teens. 4

3. Results

Examples of ISI time series are shown in Fig. 2a. The ISI series of the adult subject

has smaller @uctuations compared with the more variable ISI of the child. Two exam-

ples of the model’s output are shown in Fig. 2b; using a large value of C (C = 25)

simulates the ISI series of an adult, while using a small value (C =3) mimics the ISI

3 It is possible to add the following assumption in order to capture the observed decrease of ISI variability

with maturation [6]. When in a mode of frequency fi , the model generates as an output ISI = B=fi . We

suggest the proportionality constant, B, to be the ratio between the number of simulated strides and the

number of di4erent modes that were visited during a simulation. Then, the standard deviation of the model

output decreases when C increases with no e'ect on the model dynamics.
4 Central nervous system myelination is not fully complete until the late teens. Consequently, neural

processing and the speed of neural transmission do not reach maximum values until this point, consistent

with increasing neural interactions with maturation. See Ref. [10]. The model’s dynamics can be understood

in the following intuitive way. For C��0 (small hopping range, young child), the dynamics will be con8ned

mainly to a single “neuronal zone”; this will lead to correlations in the ISI time series. For C ≈ �0 (large

hopping range, adult), the dynamics will explore frequency modes from di'erent zones; this will lead to a

decrease in the correlations. Moreover, for C��0 the dynamics changes back and forth from one mode to a

nearby mode leading to increased magnitude correlations. For C ≈ �0 the dynamics are governed by many

di'erent modes leading to the loss of magnitude correlations.
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Fig. 2. (a) Examples of ISI series of healthy subjects, ages 5 and 25 years. (b) Examples of ISI generated

by the model. Iterating the model with a small value of the hopping-range parameter (C = 3) mimics the

ISI of young children, while a large value (C = 25) mimics that of adults.
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Fig. 3. (a) The normalized distribution of the increments of ISI series (�(ISI)i = (ISI)i+1 − (ISI)i) for the

child’s ISI series (Fig. 2a) and for the model with C =3 (Fig. 2b); both model and data are consistent with

an exponential distribution, P(x) = e−2|x| (solid line). (b) Same as (a) for the adult shown in Fig. 2a and

for model (C=25) shown in Fig. 2b; in this histogram, both data and model are consistent with a Gaussian

distribution, P(x) = e−�x
2
(solid line).

series of a child. Surprisingly, we 8nd that the normalized probability distributions of

the child ISI increment series, �(ISI)i =(ISI)i+1 − (ISI)i, and of the model with small

C are close to exponential (Fig. 3a). In contrast, the distribution converges to Gaussian

in the adult and for large C in the model (Fig. 3b).

To further test the model, we study time correlations in the ISI series. We calculate

the function F(n), which corresponds to the rms @uctuations of the integrated ISI series

of the adult (Fig. 2a) and of the model for C=25 (Fig. 2b) [4,5,7]; we use detrended

@uctuation analysis for the scaling analysis [20]. Estimating the scaling exponent from
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Fig. 4. (a) The rms @uctuation function F(n) for the ISI series of adult (©) and of the simulation (C=25; �)

shown in Fig. 2. Here n indicates the window size in stride number. Both the data and the model have

similar long-range correlation properties for the ISI series. (b) In contrast, F(n) of the magnitudes of the

ISI increments |�(ISI)i| shows weak correlations (scaling exponent of ≈ 0:55 compared to ≈ 0:5 of an

uncorrelated series).

the slope of logF(n) vs. log n, we 8nd, for both data and model, that the ISI time

series have correlations with scaling exponents ≈ 0:8 (Fig. 4a).

The scaling exponents of the original signal provide an indication of the linear

properties (two-point correlations) of the time series. Certain nonlinear aspects may

be associated with the presence of long-range correlations in the magnitudes of ISI

increments |�(ISI)i|, an index of “volatility” [17,18]. We 8nd (Fig. 4b) that the adult

magnitude series is uncorrelated (the scaling exponent is close to 0.5). The model

shows similar behavior for large C (Fig. 4b).

Next we inquire if changes in gait dynamics from childhood to adulthood might be

re@ected in changes in the scaling exponents of the ISI series. The short-range scaling

exponents of the ISI series decrease as children mature [6]. We compare the short range

scaling exponents for a group of 50 children 5 [21] with those of 10 adults [5]; this

exponent decreases from ∼ 1:0 to ∼ 0:7 (Fig. 5a). By altering C, the model simulates

these maturation-related changes in two-point correlation properties.

The magnitude series exponent of the ISI series also decreases with maturation

(Fig. 5b). Our results for the magnitude series suggest that the gait pattern of children

is more volatile (and thus more nonlinear) than the usual walking pattern of adults. We

note that: (i) unlike adults, young children have diRculty keeping their walking speed

5 Subjects walked at their self-determined, normal pace for 8 min around a 400 m running track.

Force-sensitive switches were placed inside the subject’s right shoe, underneath the heel and the ball of

the foot. The force signal was automatically analyzed to determine initial contact time (heel-strike) of each

stride. The ISI is the time between consecutive heel-strikes. For more details see Ref. [6].
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Fig. 5. The scaling exponents of the ISI series of the gait maturation database [21] and for the model. The

gait maturation database consists of ISI time series from 50 children between 3 and 13 years old. Each

time series is around 8 min (∼ 500 data points). To study the e'ects of maturation, we divide the database

into 5 subgroups: (i) 3–4 year olds (11 subjects), (ii) 5–6 year olds (10 subjects), (iii) 7–8 year olds (14

subjects), (iv) 10–11 year olds (10 subjects), and (v) 12–13 year olds (5 subjects). We also show data

[5] from an adult group (10 subjects 1 h long each; ages 20–30 years). Values for the scaling exponent

axis are given as mean ± standard deviation. For the model simulation, we generate 40 realizations for

each value of C; the average value is presented (the standard deviation is ∼ 0:05). The age axis for the

model follows the relation: age (years) =C + 2. (a) The short-range scaling exponents of the original ISI

series both for the data (©) and the model (�). The exponents calculated for window sizes 6¡n¡ 13

steps, decrease with age [6]. The scaling exponent obtained by the model decreases monotonically as C

increases and is within the error bars of the data. (b) The scaling exponent of the ISI magnitude series,

|�(ISI)i|. The magnitude scaling exponent is calculated for window size 6¡n¡ 64 for the children’s group

and 6¡n¡ 256 for the adult’s group; the maximum window size is ∼ 1
10

of the series length for both

groups. The magnitude scaling exponent decreases with age, indicating a loss of magnitude correlations with

maturation. The model exhibits a similar decrease and the simulation is within the error bars of the actual

data. The subject-to-subject variability is consistent with the scatter observed in physiologic indices of neural

development [10].

constant. A large “walking error” in one direction is likely to be followed by a large

compensatory walking error in the opposite direction—i.e., a large (or small) increment

of ISI is likely to be followed by a large (or small) decrement over a given range of

scales. This instability may lead to increased magnitude correlations. (ii) Adults can

voluntarily simulate the less stable gait of children and thereby increase the magnitude

correlations of the ISI. Children, however, cannot maintain the less volatile dynam-

ics of adults. Thus, in general, the more mature adult gait dynamics are likely to be

richer. The model shows (Fig. 5b) a similar decrease of the magnitude exponents when

increasing C and is within the error bars of the data.
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Fig. 6. The multifractal formalism applied to time series generated by the model. For the multifractal analy-

sis, we applied the wavelet transform modulus maxima technique [22,23] with the Daubechies 10-tap discrete

wavelet [24] (we repeated the analysis with the continuous Gaussian wavelet transform and obtain similar

results). We integrate the series before applying the multifractal formalism. The series length is 32,768

data points and for each value of C, we generate 10 realizations; the average value is presented. As the

8rst step of the multifractal analysis we extract the partition function Zq(n) as a function of the window

size n for di'erent moments q. Then we estimate the scaling exponent 
(q) from the slope of log2 Zq(n)

vs. log2 n, where 46 n6 2048. (a) The exponent 
(q) vs. the moment q for C = 2. (b) The Legendre

transform D(h) = qh − 
(q) of (a) where h(q) = d
=dq and D(h) is the multifractal spectrum. The maxi-

mum and minimum Holder exponents, hmax and hmin , are indicated by dashed lines and estimated as the

slope of 
(q) for −20¡q6 − 15 and 156 q¡ 20, respectively (see the dashed lines in (a)). Error bars

(1 standard deviation) are shown for both axes for q=−20, 0, and 20. (c) The broadness of the multifrac-

tal spectrum, hmax − hmin , as a function of C. For larger C, the multifractal spectrum becomes narrower.

For C�1 hmax ∼ hmin ∼ 0:5. (d) The scaling exponent of the ISI magnitude series, |�(ISI)i|, increases
monotonically as a function of hmax − hmin suggesting an increased multifractality for young children.

The decrease of the magnitude exponent with maturation is consistent with the pos-

sibility that the ISI time series becomes less multifractal as the individual matures. This

prediction cannot be tested directly on the available data since the time series for the

children are too short for multifractal analysis. However, this prediction can be tested

indirectly through our model. Fig. 6 summarizes the results of a systematic multifrac-

tal analysis on ISI series generated by the model: First, we 8nd narrower multifractal

spectra with increasing C, suggesting the possibility of a decrease of multifractality

with maturation during normal walking (Fig. 6c). Second, we 8nd that the magnitude

exponent increases monotonically with the width of the multifractal spectrum (Fig. 6d).

These two 8ndings, together with the experimental observation of the decrease of the

magnitude exponent with maturation (Fig. 5b), are consistent with the prediction of our
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model of loss of multifractality with maturation. The model’s prediction agrees with a

recent 8nding regarding the monofractality of normal gait in adults [25].

4. Summary

Before concluding, we note that this relatively simple, stochastic model is unlikely

to accurately mirror anatomical structure. However, from a “functional physiology”

point of view, the model does capture experimentally observed neurodynamics. While

a one-to-one correspondence with neural structures is not likely, the model’s be-

havior should re@ect more global features of the neural circuitry that regulates the

stride-to-stride @uctuations in gait timing and its changes with maturation and aging.

As such, study of the model and its properties may be helpful in elucidating the control

of human locomotion.

In summary, we 8nd that a simple stochastic model captures multiple aspects of gait

dynamics, and their changes with maturation, including: (i) the shape of the distribu-

tion of the ISI increments; (ii) correlation properties of the ISI; and (iii) correlation

properties in the magnitudes of the ISI increments. Further, by varying only a single

“hopping-range” parameter, C, a wide array of multifractal dynamics can be generated.

The model can also be altered by “knocking out” certain frequency modes (akin to

what may occur during very advanced age or in response to neurodegenerative disease).

Simulation with drop-out of frequency modes predicts increased gait variability, with (i)

increased magnitude exponents, and (ii) decrease of decreased long-range correlations.

Our preliminary analysis of the ISI series of older adults prone to falls is consistent

with this prediction. Generalization of the model to two and three-dimensional networks

to describe other types of neurological activities is underway.
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