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Avalanche Dynamics of Crackle Sound in the Lung
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We analyze a sequence of short transient sound waves, called “crackles,” which are associated with
explosive openings of airways during lung inflation. The distribution of time intervals between consecu-
tive crackles Dt shows two regimes of power law behavior. We develop an avalanche model which
fits the data over five decades of Dt. We find that the regime for large Dt is related to the dynamics
of distinct avalanches in a Cayley tree, and the regime for small Dt is determined by the dynamics of
crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which
provides information about lung inflation.

DOI: 10.1103/PhysRevLett.87.088101 PACS numbers: 87.19.–j, 43.25.+y

The temporal patterns of natural events have been stud-
ied extensively to identify hidden dynamics in various
processes, including such diverse phenomena as mass ex-
tinction in fossil records [1] and popping bubbles in aque-
ous foams [2]. Here we study a distinct form of popping
sound called crackles, which are among the many lung
sounds generated in the airways in a diseased lung dur-
ing breathing.

Crackles are characterized by a rapid initial pressure
deflection, called a spike, followed by a short duration
ringing. Crackles are associated with the sudden open-
ing of closed airways during lung inflation and have long
been used as a qualitative diagnostic tool [3]. Studies of
airway closure and opening indicate that, during inflation,
airways open in avalanches triggered by overcoming a hi-
erarchy of critical opening threshold pressures along the
airway tree [4,5]. The distribution of interavalanche time
intervals has been reported to be a power law for intervals
ranging from 1 to 20 s [4]. Avalanches may be composed
of discrete crackles which are natural probes containing
information about the dynamics of avalanches. Here we
analyze the intercrackle intervals from acoustic data span-
ning over 5 orders of magnitude, from 1024 to 20 s. These
data allow us to extend the scaling region found in [4] to
cover the range of 0.01 to 20 s. However, we also find a
plateau between 1023 and 1022 s and discover a new scal-
ing region for time intervals below 1023 s. We interpret
the scaling behavior using a numerical model of avalanche
dynamics of airway opening for which we also present a
mean-field solution.

We analyze sound recordings from dog lung lobes dur-
ing lung inflation [6]. The lung lobe was first degased in
a vacuum chamber collapsing almost all the airways, fol-
lowed by a controlled inflation during which the pressure at
the root of the airway tree was increased at a uniform rate
from 0 to Pmax � 3 kPa to fill the lung in tmax � 120 s. A
microphone recorded the sound pressure S�t� at the root of
the airway tree, the main bronchus of the lobe, as a func-
tion of time t (Fig. 1a). We detect the negative spikes in
S�t� using a thresholding algorithm that can find an abrupt

change in the derivative of S�t�. We use several thresholds
between 1% and 8% of the maximum amplitude of S�t�
to generate a time series of interspike intervals Dt. Two
examples are shown in Figs. 1b and 1c. The magnitude
of Dt fluctuates significantly with a decreasing envelope
(Fig. 2a). The histogram of Dt has two power law regions
extending through over 5 orders of magnitude interrupted
by a plateau of one decade (Fig. 2b). The exponents of
the two regions are a � 1.90 6 0.05 for Dt�tmax between
1026 and 1025 and b � 1.99 6 0.28 for Dt�tmax between
5 3 1024 and 0.2.

To understand the scaling behavior in Fig. 2b, we de-
velop a dynamic model which takes into account the time
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FIG. 1. Experimental data. (a) Time series of sound pressure
S�t� during the first inflation of a dog lung lobe from the col-
lapsed state recorded at a rate of 22 050 Hz; (b) a magnified
segment of S�t� with consecutive spikes. The interspike inter-
val Dt � 0.2 s of this segment corresponds to the time differ-
ence between two spikes; (c) another segment from (a) with
Dt � 0.02 s.
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FIG. 2. Data analysis. (a) Linear-log plot of one example of
Dt, in seconds, against consecutive spike numbers. (b) The
histogram of the interspike intervals for 12 different inflations
using two different thresholds of the detection algorithm: 1%
(triangles) and 8% (circles). Note that the exponents do not
depend on the value of the threshold. The continuous line is
the corresponding histogram of Dt from 104 simulations in a
14-generation symmetric tree.

required for an airway to open and the avalanche to propa-
gate through a M-generation binary Cayley tree. When
the lobe deflates to very low volumes, many peripheral
airways close up by forming a liquid bridge between the
collapsed airway walls [7]. Thus, each branch labeled
�i, j� is closed at the beginning of the inflation �t � 0�,
where i is the generation number from the root of the tree
�i � 1, 2, . . . , M� and j [ �0, 2i 2 1� labels each branch
within the ith generation. Experiments on flexible tube
models indicate that the opening of a single airway can be
characterized by a critical opening threshold pressure [8].
Thus, in our model all branches �i, j� are assigned a ran-
dom threshold pressure Pi,j uniformly distributed between
0 and Pmax [5]. The inflation is simulated by applying an
external pressure PE�t� at the top of the tree, and uniformly
increasing PE�t� � Kt in infinitesimal increments, where
K � Pmax�tmax is a constant inflation rate. In the model,
we rescale both time and pressure so that Pmax � 1 and
tmax � 1, thus K � 1.

Since an airway opens when the pressure in its parent ex-
ceeds its critical threshold pressure, the airway �0, 0� opens
when PE � P0,0 at t0,0 � P0,0, where now t0,0 is the time
associated with the opening of the root. Next, the two
daughter airways �1, 0� and �1, 1� are checked; one or both
will open if PE $ P1,0 and/or PE $ P1,1, respectively.
This opening process is then continued sequentially down
the tree until no airway connected to the root is found with
Pi,j # PE . Note that the opening of a single branch can

lead to openings of others branches which have Pi,j , PE ,
defining an “avalanche” in which many airways open in
cascade (Fig. 3a). Opening of an airway also generates
a crackle sound locally, which we model as an acoustic
spike. The size s of an avalanche is the number of seg-
ments whose threshold pressures are smaller than that of
the first airway which triggers the avalanche. Since PE

increases linearly with time, the opening of the root of the
avalanche, airway �i, j�, occurs at time ti,j � Pi,j. Thus,
the time difference between two consecutive avalanches is
Dt � DP, the pressure difference between PE values that
trigger two consecutive avalanches.

To understand the contribution of the interavalanche
time differences in the model, we first assume that open-
ing of all segments in an avalanche is instantaneous and
the propagation time is negligible. This causes all crackles
from the same avalanche to simultaneously arrive at the
root. Thus, only interavalanche time intervals are present
in this time series. From numerical simulations using M up
to 20, we obtain a single power law where the experimen-
tal power law for small Dt is no longer present (Fig. 4a).

At t � 0, the root of the tree is closed and the proba-
bility of it being open is equal to the external pressure

FIG. 3. (a) Diagrams describing avalanche timing. Initially,
just the root is open and the time for that event is t0,0. The
number of segments on the active surface that are closed is
N � 2. The pressure increases and the left daughter opens at
t1,0 and now N � 3. Following a new increase of pressure, the
right daughter of the root opens at t1,1 and N � 4. Next, the
left daughter opens at t2,2 which triggers an avalanche, where
each segment of this avalanche has a time delay (t1 and t2)
with respect to t2,2. When the avalanche stops N � 3; (b) plot
of the number of active segments N as a function of the ex-
ternal pressure PE for three different realizations in a tree with
17 generations (thin lines). The thick line represents Eq. (6).

088101-2 088101-2



VOLUME 87, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 20 AUGUST 2001

10
−8

10
−6

10
−4

10
−2

10
0

N
o

rm
a

liz
e

d
 d

is
tr

ib
u

ti
o

n
 o

f 
 ∆

 t

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

(2
M

/t
max

) ∆ t 

10
−8

10
−6

10
−4

10
−2

10
0

β = 2.1

β = 2.0

(a)

(b)

FIG. 4. Data collapse of the distributions normalized with
2M�tmax. (a) Numerical simulations for trees with M � 12 gen-
erations (circles), M � 16 generations (squares) and M � 20

generations (triangles). The solid line represents Eq. (4) and
the dashed line is the best fit for the numerical simulation with
M � 20. (b) Experimental data for the threshold of 1%, scaled
with M � 14 (circles) and for the threshold of 8%, scaled with
M � 10 (squares). The dashed line is the best fit for the data
with the threshold of 1%.

PE �0� � 0. During the time interval Dtn between two con-
secutive avalanches, n and n 1 1, the inflation is blocked
by the closed airways, the “active surface.” The closed air-
ways on the active surface have threshold pressures Pi,j

that are uniformly distributed between PE�n� and 1, where
PE �n� is the external pressure that has produced the nth
avalanche. The number of closed airways N�PE� defines
the size of the active surface at each external pressure PE .
The next avalanche takes place when PE becomes equal
to the smallest Pi,j on the active surface: PE�n 1 1� �

minN�PE ��Pi,j�. Thus, the time interval Dtn is defined
by Dtn � DPn � minN�PE��Pi,j�, where the minimum is
taken over all N �PE� closed airways on the active surface.
If Pi,j are independent and N is large enough, then Dtn is
distributed according to an exponential distribution [9]:

Pn�Dtn� �

1

Dtn

e2Dtn�Dtn , (1)

with a mean value of Dtn � �1 2 PE��N�PE�. The
distribution of Dt during the entire inflation is thus the
sum of exponential distributions corresponding to all
n � 1, 2, . . . , nmax avalanches, where nmax is the total
number of avalanches:

P�Dt� �

1

nmax

nmaxX

n�1

Pn�Dtn� . (2)

In order to evaluate this sum, we express it in terms of PE .
For each realization of threshold pressures, the variables
N �PE� and Dtn are step functions of PE. Since our goal is
to find the distribution of Dt for all realizations of disor-
der, we will replace N�PE� and Dtn by their averages over
many realizations denoted as 	· · ·
. For clarity, we intro-
duce a new notation

t�PE� � 	Dtn
 �

�1 2 PE�

	N�PE�

. (3)

Accordingly, we will replace DPn � PE�n 1 1� 2
PE�n� by t�PE�. Taking into account Eq. (1), we approxi-
mate the sum in Eq. (2) by an integral from PE � 0 to
PE � 1, corresponding to the summation from n � 1 to
n � nmax:

P�Dt� �
1

nmax

nmaxX

n�1

Pn�Dtn�

DPn

DPn

�
1

nmax

Z 1

0

e2Dt�t�PE�

t2�PE�
dPE . (4)

In order to calculate P�Dt�, we need to find an ex-
plicit expression for 	N�PE�
 since it is involved in Eq. (4)
through Eq. (3). Suppose that on average the ith genera-
tion of the tree contains Li open branches connected with
2Li branches at the next generation which can be either
open or closed. The average number of open branches at
generation i 1 1 is Li11. Since the distribution of Pi,j is
uniform between 0 and 1, the fraction of open branches is
equal to PE . Hence, the number of opened branches in the
�i 1 1�th generation is Li11 � 2PELi. This recursion re-
lation has a solution Li � �2PE�i . The number of closed
branches connected to the root through open branches at
generation i 1 1 is given by Ni11 � 2Li 2 Li11, so

Ni11 � 2�1 2 PE� �2PE�i, (5)

thus,

	N�PE�
 �

MX

i�1

Ni �

�2PE�M 2 1

2PE 2 1
�1 2 PE� . (6)

Figure 3b compares Eq. (6) with three different realiza-
tions of the numerical model for trees with M � 17. Sub-
stituting 	N�PE�
 from Eq. (6) into Eq. (3), we obtain

t�PE � �

2PE 2 1

�2PE�M 2 1
. (7)

Finally, substituting Eq. (7) into Eq. (4), we obtain the ex-
plicit form for the distribution. The normalization con-

stant nmax can be calculated as nmax �

R
1

0 dPE�t�PE� �
2M�M. For large M, the scaling properties of the integral
in Eq. (4) can be estimated by the saddle point approxima-
tion: For Dt ø 22M we have a uniform distribution,

P�Dt� � 2M21. (8)

This equation gives us an interpretation of the plateau re-
gion of the experimental distribution of Dt. For 1�2M

ø

Dt ø 1�M, we have a power law decay,

P�Dt� � 22M11Dt2221�M . (9)
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This equation gives us a mean-field interpretation of the
exponent b � 2 from the experimental distribution of Dt.
The approximations we have used affect only the finite size
correction of b, which is in the order of 1�M.

Our model predicts that the crossover between the sec-
ond power law regime with b � 2 and the plateau of the
experimental distribution of Dt scales with M as 1�2M .
Using this prediction, we estimate M from the experimen-
tal data as M � 14, for the spike detection threshold of
1%, and M � 10 for the threshold of 8%. The two curves
for different thresholds collapse after scaling them with the
corresponding values of M (Fig. 4b).

To interpret the first power law region of the experi-
mental P�Dt� for Dt�tmax , 1025 (Fig. 2b), we recognize
that, when an avalanche consisting of s openings occurs,
the segments in the avalanche do not open simultaneously.
We assume that the kth crackle (k � 1, 2, 3, . . . , s) gener-
ated inside an avalanche arrives at the root of the avalanche
with a time delay tk (Fig. 3a). The tk is taken to be
proportional to the path length �k between the root of
the avalanche and segment k that generates the crackle:
tk � �k�y, where y is a characteristic propagation veloc-
ity. We implement the dynamics of avalanche propagation
in the numerical model using a path length distribution
similar to published data [10]. Changing y shifts the first
power law region in the simulated data to the left or right,
but does not alter the exponents a and b. We find that
using y � 4.8 m�s in the model reproduces the behavior
of the experimental data over five decades of Dt. The con-
tinuous line in Fig. 2b shows the distribution of Dt for a
tree of 14 generations. There are two regions of power law
behavior with exponents of a � 2.4 and b � 2.18 similar
to the experimental values of a � 1.9 and b � 2.0.

Examining published opening times for 2 mm diameter
airways [11], we estimate that the velocity of a “popping”
type of opening is between 2 and 4 m�s. The agree-
ment with the model is good, since y depends on vari-
ous factors — including external pressure, airway diameter,
surface tension, and viscosity of the lining fluid. Since
y � 5 m�s is consistent with the experimental data, y
is related to the opening time of an airway rather than
the propagation velocity of sound in the airways, which
is larger than 100 m�s [12].

Before concluding, we note the following: (i) From
the mean-field calculation, we find that detectable crackles

come from the last 14 generations after the first closed
airway in the lobe. The agreement of the model with
experimental data is consistent with the possibility that,
in the 14 generations of the airway tree from which we
can detect crackles, the distribution of threshold pressures
is uniform. (ii) The numerical simulations suggest that
the first power law region is related to the distribution of
opening time delays, which in turn is related to the length
distribution of the airway segments. Since the airway tree
is self-similar [13], the length distribution is a power law.
Thus, the exponent a is likely to be related to the exponent
of the airway length distribution. In summary, studying the
dynamics of the lung crackle sounds may prove useful in
obtaining structural information on the airway tree.
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